首页|一种基于GABP神经网络的RIS辅助近场无线定位方法

一种基于GABP神经网络的RIS辅助近场无线定位方法

扫码查看
可重构智能表面(RIS)是 6G潜在关键技术,将其部署在无线通信系统中,可辅助基站对用户进行定位,并提高定位性能.在毫米波频段,由于频率较高,RIS面板的阵列孔径及反射单元个数较大,近场区域范围扩大,用户将大概率处于RIS的近场区域中.为此,考虑RIS辅助的无线通信系统在近场条件下对用户进行定位,将用户定位问题建模为参数估计问题,并利用最大似然估计来实现对用户三维坐标参数的估计.为求解所建立的最大似然估计问题,结合遗传算法与反向传播算法神经网络的优势,提出了一种计算效率更高的GABP 算法.仿真结果表明,所提GABP算法比传统的遗传算法计算效率更高.
A RIS assisted near field wireless localization method based on GABP neural network
Reconfigurable intelligent surface is a potentially key technology in 6G,which can be deployed in wireless communication systems to assist base stations in localizing users and enhancing localization performance.In the millimeter wave frequency band,due to the higher frequency,the array aperture and number of reflection units of RIS panels are larger,expanding the near-field range,and users are likely to be in the near-field region of RIS.Therefore,the RIS-assisted wireless communication system was considered to localize the user under near-field conditions,and the user localization problem was modeled as a parameter estimation problem,and the maximum likelihood estimation was used to achieve the estimation of the user's 3D coordinate parameters.To solve the established maximum likelihood estimation problem,a GABP algorithm,which combined the genetic algorithm and back propagation neural network,was proposed.Simulation results demonstrated that the proposed GABP algorithm was more computationally efficient than traditional genetic algorithm.

reconfigurable intelligent surfacenear field positioningmaximum likelihood estimationGABP algorithm

洪升、曾俊宏、郑朝丹、许朋振、李铭晖

展开 >

南昌大学信息工程学院,江西 南昌 330031

可重构智能表面 近场定位 最大似然估计 GABP算法

国家自然科学基金资助项目江西省自然科学基金资助项目江西省财政科技专项包干制试点示范项目

6230124320232BAB202016ZBG20230418006

2024

南昌大学学报(工科版)
南昌大学

南昌大学学报(工科版)

影响因子:0.319
ISSN:1006-0456
年,卷(期):2024.46(2)