首页|基于U-Net卷积神经网络的焊缝激光条纹提取

基于U-Net卷积神经网络的焊缝激光条纹提取

扫码查看
针对钢件焊缝激光条纹图像中存在强眩光、强弧光和飞溅遮盖等干扰问题,提出了一种基于U-Net卷积神经网络的焊缝激光条纹特征提取方法.该方法融合底层卷积的细节特征与高层卷积的抽象特征信息,生成紧凑的焊缝激光条纹图像特征.在采集到的数据上测试,检测准确率达到 99.80%,平均交并比达到 82.67%.该网络构建的参数少(大小为 22.58 MB),且在与传统方法的对比中获得了更好的效果.因此,构建的网络模型检测准确率高,抗干扰能力强,能够满足自动化电弧焊接中检测焊缝激光条纹的要求.
Laser stripe extraction of weld seam based on U-Net covolutional neural network
Aiming at the interference problems such as strong dazzling light,strong arc light and splash covering in laser fringe images of steel welds,a weld laser fringe feature extraction method based on a U-Net convolutional neural network is proposed to fuse the details of the underlying convolution with the abstract feature information of the high-level convolution to generate compact weld features.The accuracy of the results tested on the collected data reached 99.80%,and the mean intersection over union reached 82.67%.The network has few parameters(only 22.58 MB)and has achieved better results compared with traditional methods.Therefore,the network model built in this thesis has high detection accuracy and strong anti-interference ability,which can satisfy the requirements of detecting weld laser fringes in automatic arc welding.

weld inspectiondeep learningconvolutional neural networkimage processingsemantic segmentation

干王杰、翟翊君、詹礼新、赵迎泽、李渭、潘平吉

展开 >

南昌大学软件学院,江西 南昌 330047

厦门大学福建省智慧城市空间感知与计算重点实验室,福建 厦门 361005

焊缝检测 深度学习 卷积神经网络 图像处理 语义分割

江西省自然基金青年项目

20212BAB212012

2024

南昌大学学报(工科版)
南昌大学

南昌大学学报(工科版)

影响因子:0.319
ISSN:1006-0456
年,卷(期):2024.46(2)