首页|基于改进灰色BP神经网络的新能源汽车数量预测模型

基于改进灰色BP神经网络的新能源汽车数量预测模型

扫码查看
为科学预测新能源汽车保有量,在探究灰色预测模型适应性的基础上,对传统灰色模型GM(1,1)进行初始值待定改进.采用相关性分析选取12个能够准确描述新能源汽车发展内在特征的关键指标对改进后的灰色模型进行BP神经网络残差修正,建立改进的灰色BP神经网络组合的新能源汽车保有量预测模型.结果表明:初始值待定的改进灰色理论和神经网络的有效结合,可获得较高的新能源汽车保有量训练值精度,还可以很好地结合前一年社会发展水平、道路水平和汽车驾驶人数量等因素,精确预测新能源汽车的数量.经模拟预测得到2023年全国新能源汽车的保有量为2 026.24万辆,绝对误差为14.76万辆,相对误差仅为0.72%.
New energy vehicle quantity prediction model based on improved grey BP neural network
In order to predict the number of new energy vehicles scientifically,the initial value of the traditional grey model GM(1,1)was improved on the basis of exploring the adaptability of the grey prediction model.By using correlation analysis,12 key indicators that can accurately describe the internal characteristics of the development of new energy vehicles were selected to correct the residual error of the improved grey model,and a prediction model of new energy vehicle ownership combined with improved grey BP neural network was established.The results showed that the effective combination of the improved grey theory with undetermined initial value and the neural network had a very high precision of the training value of the new energy vehicle ownership,and accurately predicted the number of new energy vehicles by combining the factors,such as social development level,road conditions and the number of car drivers,etc.,in the previous year.The simulation predicted that the ownership of new energy vehicle across the country in 2023 would be 20.262 4 million units,with an absolute error of 147 600 units and a relative error of only 0.72%.

neural networknew energy vehiclescorrelation analysisimproved grey model

陈丽静、张丽娇

展开 >

福建警察学院治安系,福建 福州 350007

福州大学机电工程实践中心,福建 福州 350108

神经网络 新能源汽车保有量 相关性分析 改进灰色模型

2024

南昌大学学报(工科版)
南昌大学

南昌大学学报(工科版)

影响因子:0.319
ISSN:1006-0456
年,卷(期):2024.46(4)