首页|一类Kirchhoff-Poisson系统在Heisenberg群上解的存在性

一类Kirchhoff-Poisson系统在Heisenberg群上解的存在性

扫码查看
在Heisenberg群上研究了 一类临界的Kirchhoff-Poisson系统.由于存在临界和非局部项,导致空间嵌入不紧,在非线性项适当的假设下,通过变分方法克服了空间的紧性并且得到该系统至少存在一个解.在此基础上,借助形变引理和拓扑度理论,证明了该解是一个变号解.
Existence of solutions for a class of Kirchhoff-Poisson systems on the Heisenberg group
A class of critical Kirchhoff-Poisson systems on Heisenberg group was studied.Due to the existence of critical and non-local terms,the space embedding was not compact.Under the assumptions that the nonlinear terms were appropriate,the space compactness was overcame by the variational method and established the existence of at least one solution to this system.Furthermore,using deformation lemma and topological degree theory,it was proved that the solution was a sign-changing solu-tion.

Heisenberg groupKirchhoff-Possion systemvariational methoddeformation lemmatopological degree theory

郭加超、索洪敏、安育成

展开 >

贵州民族大学数据科学与信息工程学院,贵阳 550025

贵州工程应用技术学院理学院,毕节 551700

Heisenberg群 Kirchhoff-Poisson系统 变分方法 形变引理 拓扑度理论

国家自然科学基金国家自然科学基金毕节市科学技术基金

1186102111661021毕科联合202326号

2024

南昌大学学报(理科版)
南昌大学

南昌大学学报(理科版)

CSTPCD
影响因子:0.418
ISSN:1006-0464
年,卷(期):2024.48(1)
  • 19