首页|两类非线性复域时滞微分方程亚纯函数解的存在性

两类非线性复域时滞微分方程亚纯函数解的存在性

扫码查看
研究了两类非线性复域时滞微分方程,fn+n∑j=1ωjfn-j(f')j+q(z)eQ(z)f(k)(z+c)=p1(z)eλz+p2(z)e-λz与fn+n∑j=1ωjfn-j(f')j+(q)(z)eQ(z)f(k)(z+c)=u(z)ev(z)亚纯函数解的存在性,进而研究解存在情况下解的表示形式与增长性,其中n,k是满足n≥2,k ≥0的两个正整数,c,λ≠0为常数,wj(j=1,…,n)为不全为零的常数,q(z),pi(z)(i=1,2)为非零有理函数,Q(z),v(z)为非常数多项式,~q(z),u(z)为增长级小于1的非零亚纯函数.结果推广了之前的一些结论,并给出一些例子说明这些解的存在性.
The existence of meromorphic solutions for two nonlinear complex delay-differential equations
This paper studied the existence of meromorphic solutions to two nonlinear complex delay-differential equations fn+n∑j=1ωjfn-j(f')j+q(z)eQ(z)f(k)(z+c)=p1(z)eλz+p2(z)e-λz,and fn+∑ωjfn-j(f')j+(q)(z)eQ(z)f(k)(z+c)=u(z)ev(z),where n ≥2,k ≥0 are positive integers,c,λ ≠0 are constants,ωj(j=1,,n)are constants such that ωj(j=1,…,n)are not all zero,q(z),pi(z)(i=1,2)are non-vanishing rational f unctions,Q(z),v(z)are non-constant polynomials,q(z),u(z)are non-vanishing meromorphic functions with order less than 1.Furthermore,investigated the form of existence and growth of the solutions.Our results improved and generalized some previous results.Some examples were given.

complex delay-differential equationsnevanlinna theorymeromorphic solutionshadamard factorization theorem

付雨欣、蒋业阳、刘康

展开 >

江西科技师范大学大数据科学学院,江西南昌 330038

复域时滞微分方程 Nevanlinna理论 亚纯函数解 Hadamard因子分解定理

江西省自然科学基金

20232BAB201007

2024

南昌大学学报(理科版)
南昌大学

南昌大学学报(理科版)

CSTPCD
影响因子:0.418
ISSN:1006-0464
年,卷(期):2024.48(1)
  • 23