首页|单位圆内高阶非齐次线性微分方程解及其任意阶导数的值分布

单位圆内高阶非齐次线性微分方程解及其任意阶导数的值分布

扫码查看
研究高阶非齐次线性微分方程f(k)+Ak-1(z)f(k-1)+…+A1(z)f'+A0(z)f=F(z)解及其任意阶导数的值分布,其中系数是单位圆内[p,q]级有限的解析函数或者亚纯函数.得到了一些关于f(j)(z)φ(z)的复振荡定理,丰富和完善了前人的相关结论.
Value distribution of solutions of the higher-order non-homogeneous linear differential equations and their arbitrary-order derivatives in the unit disc
In this paper,we studied the value distribution of solutions and their arbitrary-order derivatives of the higher-or-der non-homogeneous linear differential equation f(k)+Ak-1(z)f(k-1)+…+A1(z)f'+A0(z)f=F(z),where the coeffi-cients were analytic functions or meromorphic functions of finite[p,q]-order in the unit disc.We obtained some oscillation the-orems for f(j)(z)-φ(z),which were generalizations and improvements of some previous theorems.

differential equationanalytic functions[pq]-order[p,q]-type

龚攀、钟希杰、涂金

展开 >

上饶师范学院数学与计算科学学院,江西上饶 334001

南昌交通学院,江西南昌 330100

江西师范大学数学与统计学院,江西南昌 330022

微分方程 解析函数 [p,q]级 [p,q]型

国家自然科学基金资助项目国家自然科学基金资助项目

1216300312161074

2024

南昌大学学报(理科版)
南昌大学

南昌大学学报(理科版)

CSTPCD
影响因子:0.418
ISSN:1006-0464
年,卷(期):2024.48(4)