首页|面向售后服务文本的空调现场失效数据CAP-GRU智能挖掘

面向售后服务文本的空调现场失效数据CAP-GRU智能挖掘

扫码查看
空调售后服务文本信息中蕴含着极为丰富的反映其现场可靠性的现场失效数据.为解决目前基于人力的数据挖掘存在的效率低下和质量无法保证的问题,提出基于深度学习的智能挖掘方法.该方法遵循基于空调失效判据的现场失效数据挖掘流程,将门控循环单元(gated recurrent unit,GRU)和胶囊网络(capsule neural network,CAP)两种各具特点的提取特征信息的深度学习技术并行集成,构建现场失效数据的智能挖掘模型,设计基于GRU、CAP两种算法的损失函数值的动态融合机制.某空调企业三款家用空调现场失效数据的挖掘应用结果表明,数据挖掘的准确率和调和平均数的最小值分别为97.78%和97.69%,能够满足现场可靠性评估的要求.
Intelligent mining of air-conditioner field failure data based on the fusion of GRU and CAP for after-sales service text
The after-sales service text of air-conditioner contains extremely rich field failure data that reflects its operational reliability.To solve the low efficiency and poor quality assurance based on human data mining,this study proposes an intelligent mining method based on deep learning.The method is based on the field failure data mining process of air-conditioner failure criteria,its intelligent mining model integrates two deep learning techniques for extracting feature information in parallel,namely gate recurrent unit(GRU)and capsule neural network(CAP),and a dynamic fusion mechanism of GRU and CAP algorithm results is designed according to the loss function value.The application results of this method in the field failure data mining of three types of household air-conditioners show that the minimum values of the accuracy and harmonic mean of data mining results are 97.78%and 97.69%,respectively.

field failure datatext mininggated recurrent unitcapsule neural networkair-conditioner

刘艳、胡仕捷、王明明、余亮、刘卫东

展开 >

上海海事大学物流工程学院,上海 201306

南昌大学先进制造学院,江西 南昌 330031

广东美的制冷设备有限公司可靠性工程中心,广东 顺德 528311

现场失效数据 文本信息挖掘 门控循环单元 胶囊网络 空调

2024

南昌大学学报(理科版)
南昌大学

南昌大学学报(理科版)

CSTPCD
影响因子:0.418
ISSN:1006-0464
年,卷(期):2024.48(6)