首页|基于深度学习的行人重识别技术的研究进展

基于深度学习的行人重识别技术的研究进展

扫码查看
行人重识别技术能够在跨摄像头场景下识别并匹配与目标人物具有相同身份的行人,为交通管理、公共安全、智慧城市建设等提供强大的技术支持.本文面向行人重识别的实际应用需求,首先对行人重识别进行系统性的介绍和归纳,包括行人重识别的研究现状、数据集与评价指标.之后,总结并分析无监督行人重识别、换衣行人重识别、遮挡行人重识别3个方面的前沿研究,归纳其发展现状,并对每个方向的现有方法分别进行梳理与性能对比.最后,对行人重识别的发展趋势进行分析与展望.本文针对行人重识别方法进行综述,希望能够为研究人员进一步开展行人重识别领域的相关研究以及推动行人重识别技术发展提供参考和帮助.
Recent Advances in Person Re-identification Based on Deep Learning
Person re-identification can identify and match persons with the same identity as the target person in cross-camera scenarios,providing strong technical support for traffic management,public safety,smart city construction,etc.Aiming at the practical application needs of person re-identification,this paper first systematically introduces and summarizes person re-identification,including the research status,datasets,and evaluation indicators of person re-identification.Afterwards,this paper summarizes and analyzes the cutting-edge research in three areas:unsupervised person re-identification,cloth-changing person re-identification,and occluded person re-identification,while their current development status is summarized,and the existing methods in each direction are sorted out and compared.Finally,the development trend of person re-identification is analyzed and prospected.This paper reviews person re-identification methods,hoping to provide reference and help for researchers to further carry out relevant research in the field of person re-identification and promote the development of person re-identification technology.

person re-identificationunsupervised person re-identificationcloth-changing person re-identificationoccluded person re-identification

韩清、李龙飞、闵卫东

展开 >

南昌大学数学与计算机学院,南昌 330031

南昌大学元宇宙研究院,南昌 330031

南昌大学虚拟现实江西省重点实验室,南昌 330031

行人重识别 无监督行人重识别 换衣行人重识别 遮挡行人重识别

2024

南昌航空大学学报(自然科学版)
南昌航空大学

南昌航空大学学报(自然科学版)

影响因子:0.287
ISSN:1001-4926
年,卷(期):2024.38(3)