首页|计及分布式能源时序不确定性的短期负荷预测技术

计及分布式能源时序不确定性的短期负荷预测技术

扫码查看
随着城镇分布式光伏规模快速增长,其出力的随机波动特性对城镇负荷的影响也不断加剧.传统方法难以准确预测上述场景下的负荷变化规律,不利于电网的安全稳定运行.面对大规模分布式光伏接入的负荷预测场景,文章提出一种考虑分布式光伏影响下的短期负荷预测方法.光伏接入下的电网侧负荷为实际用电负荷与光伏出力之间的差值,因此,文章在构造输入数据之前,首先采用大数据挖掘技术,分析光伏出力和用户侧负荷特性以及二者与各自影响因素之间的相关性,通过特征构造选出相关性较大的影响因素作为负荷预测模型的输入特征集;然后构建融合自注意力机制的LSTM神经网络预测模型,深度挖掘负荷序列特征.采用灰狼算法对预测模型进行优化,确定预测效果最佳的模型.算例分析结果表明,文章所提方法能够有效提高含分布式光伏的净负荷预测精度.
Short-term load forecasting technology with distributed energy timing uncertainty
In recent years,with the rapid growth of the scale of distributed photovoltaic deployment in cities and towns,the impact of random fluctuation characteristics of its output on urban load is also increasing.The traditional method is difficult to accurately predict the complex load fluctuation after large-scale deployment of distributed photovoltaic system,which is not conducive to the safe and stable operation of power grid.To solve these problems,this paper proposes a short-term load forecasting method considering distributed PV.Since the net load including distributed PV is the difference between the actual consumption load of the user side and the PV output,this paper first adopts the big data mining technology to analyze the characteristics of PV output and the user-side load as well as the correlation between the two and their respective influencing factors before constructing input data,and selects the influential factors with high correlation as the input feature set of the net load prediction model.Secondly,the LSTM neural network prediction model integrating self-attention mechanism is constructed to deeply explore the characteristics of load sequence.The grey Wolf algorithm is used to optimize the parameters of the prediction model and determine the model with the best prediction effect.Finally,an example simulation shows that the proposed method can effectively improve the prediction accuracy of net load with distributed PV.

distributed photovoltaiccorrelation analysisself-Attention mechanismLSTMgrey wolf optimization algorithmload forecasting

杨小龙、姚陶、孙辰军、魏新杰、张华铭、孙毅

展开 >

国网河北省电力有限公司信息通信分公司,河北石家庄 050000

国网河北省电力有限公司,河北石家庄 050021

北京清软创新科技股份有限公司,北京 100080

华北电力大学电气与电子工程学院,北京 102206

展开 >

分布式光伏 相关性分析 自注意力机制 LSTM 灰狼优化算法 负荷预测

国家电网科技项目

5204XA22000D

2024

可再生能源
辽宁省能源研究所 中国农村能源行业协会 中国资源综合利用协会可再生能源专委会 中国生物质能技术开发中心 辽宁省太阳能学会

可再生能源

CSTPCD北大核心
影响因子:0.605
ISSN:1671-5292
年,卷(期):2024.42(1)
  • 17