首页|基于自适应学习率卷积神经网络的新型配电网源网荷储无功协调优化技术

基于自适应学习率卷积神经网络的新型配电网源网荷储无功协调优化技术

扫码查看
随着"双碳"目标的推进,分布式新能源接入电网的容量大幅度提升,配电网源网荷储协调优化策略是实现分布式新能源消纳的重要方法,其中无功优化能够保证电网安全稳定运行.文章提出了一种基于自适应学习率卷积神经网络的配电网源网荷储无功协调优化技术.首先以最小网络损耗和最低电压偏移为目标,构建无功优化模型;其次利用卷积神经网络强大的非线性拟合能力,挖掘出电网运行场景和无功调压设备、储能充放电策略之间的映射关系,引入自适应学习率的方式更新网络参数,提高了网络训练效率;再次通过控制无功调压设备和储能装置充放电情况协调分布式电源出力,实现电力系统无功电压主动优化控制;最后通过IEEE33 节点电网模型进行了仿真验证.结果表明,文章所提的配电网源网荷储无功协调优化方法提高了电力系统电压调节能力,为配电网安全可靠运行奠定了良好基础.
Reactive power coordination optimization technology for source-network-load-storage in new distribution network based on adaptive learning rate convolutional neural network
With the promotion of the"dual carbon"goal,the capacity of distributed new energy connected to the power grid has significantly increased.The use of distribution network source network load storage coordination optimization strategy is an important method to achieve distributed new energy consumption,among which reactive power optimization can ensure the safe and stable operation of the power grid.This article proposes an adaptive learning rate convolutional neural network based optimization technique for load storage and reactive power coordination in distribution networks.Firstly,a reactive power optimization model is constructed with the goal of minimizing network loss and voltage offset.Secondly,utilizing the powerful nonlinear fitting ability of convolutional neural networks,the mapping relationship between power grid operation scenarios,reactive power regulation equipment,and energy storage charging and discharging strategies is excavated.Adaptive learning rate is introduced to update network parameters and improve network training efficiency.Finally,by controlling the charging and discharging conditions of reactive power regulation equipment and energy storage devices to coordinate the output of distributed power sources,active optimization control of reactive power and voltage in new distribution network is achieved.After simulation verification of the IEEE33 node power grid model,the results show that the proposed optimization method for load storage and reactive power coordination in the distribution network source network improves the voltage regulation ability of the power system,laying a good foundation for the safe and reliable operation of the distribution network.

distributed new energyoptimization of source network load storage coordinationreactive power optimizationadaptive learning rateconvolutional neural network

钱进宝、刘晓光、蔡玺、刘熠、戴剑丰

展开 >

国网甘肃省电力公司兰州供电公司, 甘肃 兰州 730000

甘肃同兴智能科技发展有限责任公司, 甘肃兰州 730050

南京邮电大学 自动化学院 人工智能学院, 江苏 南京 210023

分布式新能源 源网荷储协调优化 无功优化 自适应学习率 卷积神经网络

国家自然科学基金项目

62173188

2024

可再生能源
辽宁省能源研究所 中国农村能源行业协会 中国资源综合利用协会可再生能源专委会 中国生物质能技术开发中心 辽宁省太阳能学会

可再生能源

CSTPCD北大核心
影响因子:0.605
ISSN:1671-5292
年,卷(期):2024.42(2)
  • 1
  • 17