首页|考虑可再生能源出力不确定性与碳排放成本的台区运行优化策略研究

考虑可再生能源出力不确定性与碳排放成本的台区运行优化策略研究

扫码查看
随着电网公司市场化改革的进行,电力市场将逐渐吸引各类社会资本的投入.配电网下辖的台区和配电网本身将成为隶属于不同利益主体的竞争场所,形成相互竞争的博弈格局.与此同时,分布式可再生能源的高比例接入提升了配电网能源构成的清洁性,但其出力的不确定性也导致配电网调度运行风险进一步提升.为平抑分布式可再生能源出力的不确定性,将隶属于同一配电台区的"分布式可再生能源-分布式火电-储能-灵活性负荷"作为整体,以安全性和经济性为目标,由配电网运营商统一调控.首先,为协调配电网运营商和其下辖台区之间的利益关系,文章建立了由配电网运营商和其下辖的多个台区所构成的主从博弈模型,运用条件风险价值理论量化以风光为主的分布式可再生能源导致的不确定性风险;然后,为进一步考虑分布式火电的碳排放成本,实现分布式可再生能源与火电的灵活互补调控,将各台区主体在碳市场中的获利加入优化调度模型中,通过BP神经网络拟合,将主从博弈模型简化为单层模型,并运用粒子群算法进行求解;最后,通过算例讨论了不同可再生能源出力风险与碳价下各台区内不同种类分布式电源出力变化,进一步验证了该优化策略的有效性.
Research on optimization strategies for the operation of multiple transformer districts con-sidering the uncertainty of distributed renewable energy output and carbon emission costs
With the market-oriented reform of power grid companies,the power market will gradually attract the investment of various social capital.The transformer districts(TDs)subordinated to the distribution network and the distribution network itself provided a platform for the multi-agent competition,forming a competitive game pattern.At the same time,the high proportion of DRE access improves the cleanliness of the distribution network,but the uncertainty of DREs'output also leads to the further increase of the distribution network dispatching operation risk.To mitigate the uncertainty,the distributed renewable energy,distributed thermal power generation,energy storage and flexible load within the same TD is treated as a whole and regulated by the distribution grid operator with the objectives of safety and economy.Firstly,a leader-follower game model consists of the distribution grid operator and multiple transformer districts is established to coordinate the interests between the distribution grid operator and its subordinate TDs.Conditional value-at-risk theory is used to quantify the uncertainty risk caused by renewable energy represented by wind and solar power.Next,the profit of each TD in the carbon market is incorporated into the optimization scheduling model to further consider the carbon emission costs of distributed thermal power generation achieving flexible complementary regulation between distributed renewable energy and thermal power.The BP neural network is used to fit the model,simplifying the leader-follower game model into a single-level model,which is then solved using a particle swarm algorithm.Finally,the variations in dis-tributed power generation within each TD under different renewable energy output risks and carbon prices are discussed to further validate the effectiveness of the model.

uncertaintycarbon emission costsconditional value-at-riskBP neural networkstackelberg game

王建波、秋泽楷、张小庆、豆敏娜、刘啸、卢俞帆、吕锡林、王俪蓉

展开 >

国网陕西省电力有限公司电力科学研究院,陕西 西安 710100

华北电力大学,北京 102206

不确定性 碳排放成本 条件风险价值 BP神经网络 主从博弈

国网陕西省电力有限公司科技项目

5226ky230006

2024

可再生能源
辽宁省能源研究所 中国农村能源行业协会 中国资源综合利用协会可再生能源专委会 中国生物质能技术开发中心 辽宁省太阳能学会

可再生能源

CSTPCD北大核心
影响因子:0.605
ISSN:1671-5292
年,卷(期):2024.42(3)
  • 18