首页|基于DBN的风电机组变桨系统可靠性动态评估

基于DBN的风电机组变桨系统可靠性动态评估

扫码查看
为了对风电机组变桨系统的潜在风险进行可靠的动态预测,针对变桨系统部件种类多、系统复杂、故障特征提取困难的问题,文章首先对变桨系统故障点和故障传递过程进行归纳分析,建立故障树;然后将其转化为融合Leaky Noisy-Or节点的动态贝叶斯网络(DBN),保证了模型精度并具备了动态预测能力;最后采用 5折交叉验证的方式对模型进行寻优并验证。测试结果表明,该方法在对变桨系统进行风险预测、故障致因分析、风险动态演化过程分析方面准确率较高,可指导变桨系统进行预防性维护,在保证风电机组整体安全方面具有工程应用价值。
Dynamic reliability evaluation of wind turbine pitch system based on DBN
In order to make reliable dynamic prediction of the potential risk of pitch system,aiming at the problems of multiple components,complex system and difficult fault feature extraction of pitch system,the fault tree is established through the induction and analysis of its fault point and fault transmission process,and then it is transformed into a dynamic Bayesian network(DBN)integrating Leaky Noisy-or nodes,which ensures the accuracy of the model and has the dynamic prediction ability.The model is optimized and verified by using a 5-fold cross-validation method.The test results show that this method has high accuracy in risk prediction,fault cause analysis and risk dynamic evolution process analysis of pitch system,and has engineering application value in guiding the preventive maintenance of pitch system and ensuring the overall safety of wind turbine.

pitch systemdynamic Bayesian networkcross validationreliability evaluation

冯红岩、朱海娜、邱美艳、冯玉龙

展开 >

天津中德应用技术大学,天津 300350

天津瑞源电气有限公司,天津 300308

变桨系统 动态贝叶斯网络 交叉验证 可靠性评估

天津市科技计划项目技术创新引导专项优秀特派员项目

20YDTPJC01850

2024

可再生能源
辽宁省能源研究所 中国农村能源行业协会 中国资源综合利用协会可再生能源专委会 中国生物质能技术开发中心 辽宁省太阳能学会

可再生能源

CSTPCD北大核心
影响因子:0.605
ISSN:1671-5292
年,卷(期):2024.42(4)
  • 9