基于MTF-Swin Transformer的风机齿轮箱故障诊断
Fault diagnosis of wind turbine gearbox based on MTF-Swin Transformer
张彬桥 1雷钧 1万刚2
作者信息
- 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002;梯级水电站运行与控制湖北省重点实验室,湖北宜昌 443002
- 2. 中国长江电力股份有限公司,湖北 宜昌 443002
- 折叠
摘要
针对风机齿轮箱实际工况复杂多变及含有强噪声,传统故障诊断方法对风机齿轮箱故障诊断识别准确率较低的问题,文章提出了MTF-Swin Transformer风机齿轮箱故障诊断模型.首先,采用马尔科夫变迁场(MTF)图形编码方法将原始一维振动时序信号转化为具有关联时间信息的二维特征图谱;然后,将特征图谱作为Swin Transformer模型的输入,基于自注意力机制进行自动特征提取;最后,实现对不同故障类型的分类.仿真结果表明,该方法对齿轮箱故障诊断准确率达到了99.48%,证明了该方法的有效性和优越性.
Abstract
In response to the challenge posed by the limited accuracy of traditional fault diagnosis methods in wind turbine gearbox applications due to the complex and variable operational conditions and the presence of significant noise,the MTF-Swin Transformer wind turbine gearbox fault diagnosis model is proposed.Initially,the one-dimensional vibration time series signal is transformed into a two-dimensional feature map with correlated temporal information using the Markov Transition Field(MTF)graph encoding method.Subsequently,this feature map is employed as the input for the Swin Transformer model,which utilizes a self-attention mechanism for automatic feature extraction.This process culminates in the classification of various fault types.The results demonstrate a fault diagnosis accuracy of 99.48%,affirming the effectiveness and superiority of the proposed method.
关键词
马尔科夫变迁场(MTF)/Swin/Transformer/风机齿轮箱/故障诊断Key words
Markov Transition Field/Swin Transformer/wind turbine gear box/fault diagnosis引用本文复制引用
基金项目
国家自然科学基金面上项目(52077120)
出版年
2024