可再生能源2024,Vol.42Issue(6) :781-788.

基于多元经验模态分解的风电并网系统次同步振荡检测

Subsynchronous oscillation detection in wind power system using multivariate empirical mode decomposition

于鹏 郭国先 杨晓明 刘颖明
可再生能源2024,Vol.42Issue(6) :781-788.

基于多元经验模态分解的风电并网系统次同步振荡检测

Subsynchronous oscillation detection in wind power system using multivariate empirical mode decomposition

于鹏 1郭国先 2杨晓明 1刘颖明2
扫码查看

作者信息

  • 1. 国网辽宁省电力有限公司电力调度控制中心,辽宁沈阳 110006
  • 2. 沈阳工业大学电气工程学院,辽宁沈阳 110870
  • 折叠

摘要

随着风电的大规模并网,电力系统次同步振荡(SSO)事件频发,严重威胁电网的安全稳定运行.实现风电并网系统SSO的准确检测,对保障系统稳定运行具有重要意义.现有的基于量测数据的SSO检测方法多为单通道方法,难以兼顾系统全局SSO特性.为此,文章提出了一种基于多元经验模态分解(MEMD)的风电并网系统SSO检测方法.首先,对风电并网点量测数据进行多元经验模态分解,进而借助Teager-Kaiser能量算子(TKEO)筛选出含SSO模式的IMF分量;然后,采用希尔伯特黄变换(HHT)辨识次同步振荡频率及阻尼比;最后,结合改进的4机2区域测试系统的仿真数据对所提SSO检测方法进行测试,结果验证了所提方法的有效性.

Abstract

With the large-scale integration of wind power,power system subsynchronous oscillation(SSO)events occur frequently,which seriously threatens the safe and stable operation of the power grid.The accurate detection of SSO in wind power grid-connected system is of great significance to ensure the stable operation of the power systems.Most of the existing SSO detection methods are single-channel methods,which are difficult to take into account the global SSO characteristics of the systems.Therefore,this paper proposes a SSO detection method for wind power grid-connected system based on multivariate empirical mode decomposition(MEMD).Firstly,the multivariate empirical mode decomposition is performed on the measurements of wind power grid-connected points,and then the IMF components with SSO mode are screened out via Teager-Kaiser energy operator(TKEO).Then,the Hilbert-Huang transform(HHT)is used to identify the SSO frequency and damping ratio.Finally,the proposed detection method is analyzed by the improved 4-machine 2-area system simulation data,and the results verify the effectiveness of the proposed method.

关键词

次同步振荡检测/量测信息/多元经验模态分解/Teager-Kaiser能量算子/希尔伯特黄变换

Key words

subsynchronous oscillation detection/measurements/multivariate empirical mode decomposition/Teager-Kaiser energy operator/Hilbert-Huang transform

引用本文复制引用

基金项目

国家电网公司项目(2023GW-16)

出版年

2024
可再生能源
辽宁省能源研究所 中国农村能源行业协会 中国资源综合利用协会可再生能源专委会 中国生物质能技术开发中心 辽宁省太阳能学会

可再生能源

CSTPCD北大核心
影响因子:0.605
ISSN:1671-5292
段落导航相关论文