首页|基于天气状态模式识别的SSA-BP神经网络光伏电厂功率及碳减排量预测

基于天气状态模式识别的SSA-BP神经网络光伏电厂功率及碳减排量预测

扫码查看
文章提出了一种基于天气状态模式识别并结合SSA-BP(Sparrow Search Algorithm-Back Propagation)预测光伏出力的方法。首先,在分析辐照度、温度、风速等参数变化规律基础上,基于高斯混合模型,针对专业天气类型开展分类,获得类晴、类雨和类阴 3 种典型的广义天气;然后,将数据作为SSA-BP神经网络输入,对光伏电厂出力分类进行预测;最后,结合碳核算方法学对光伏发电项目碳减排量进行核算。结果表明:利用分类识别和改进的SSA-BP神经网络,在3 种天气类型预测中平均相对误差分别为 0。195,0。243,0。310;SSA-BP与其他模型相比,平均相对误差降低了 17。8%~66。7%。此外,预测CO2 减排量与实际核算值相对误差为3。37%,亦表现出良好预测效果。
Prediction of photovoltaic power plant output and related carbon reduction based on SSA-BP neural network with pattern recognition
This paper proposes a method to predict the photovoltaic output based on weather state pattern recognition and SSA-BP,which is more accurate than traditional single models under different weather conditions.Firstly,the historical data was cleaned using the 3sigma algorithm to obtain the data that can reflect the output of photovoltaic power plants and the regularity of weather changes.Then,based on the analysis of the parameters such as irradiance,temperature,and wind speed,Gaussian mixture models were applied to classify the professional weather types and three typical generalized weather types were obtained.Furthermore,the data was used as SSA-BP neural network input to predict the futuristic photovoltaic power plant output.Finally,the carbon accounting method was used to calculate the carbon emission reduction of the photovoltaic power generation project.The experimental results show that through classification recognition and the optimized SSA-BP neural network,the mean relative errors in the prediction for the three weather types are 0.195,0.243 and 0.310,respectively.Compared with other predication models,the relative errors are reduced by 17.8%~66.7%.In addition,the relative error between the predicted carbon dioxide emission reduction and actual value is only 3.37%.The model proposed in this work shows satisfactory prediction results.

photovoltaic powerpattern recognitionSparrow Search Algorithm-Backpropagation(SSA-BP)power predictionweather conditions

胡浔惠、丁伟、曹敬、陈时熠、李梦阳、姚钦才

展开 >

国电南瑞科技股份有限公司,江苏 南京 211106

国电南瑞南京控制系统有限公司,江苏 南京 211106

东南大学 能源与环境学院,江苏 南京 210096

东南大学 碳中和科学技术研究院,江苏 南京 210096

展开 >

光伏发电 模式识别 SSA-BP神经网络 功率预测 天气状态

国电南瑞南京控制系统有限公司科技项目

524609220030

2024

可再生能源
辽宁省能源研究所 中国农村能源行业协会 中国资源综合利用协会可再生能源专委会 中国生物质能技术开发中心 辽宁省太阳能学会

可再生能源

CSTPCD北大核心
影响因子:0.605
ISSN:1671-5292
年,卷(期):2024.42(7)
  • 9