首页|基于AP聚类算法的充电站/光伏电站一体化规划方法

基于AP聚类算法的充电站/光伏电站一体化规划方法

扫码查看
文章基于熵权法构建光伏出力特性指标权重,利用AP聚类算法生成典型场景.同时,计入电动汽车负荷时空分布特性及需求响应能力,建立了负荷联动时空响应模型.基于分时电价与光伏典型场景出力,优化电动汽车充电时序及空间布局,满足充电站距离约束、系统网络约束等前提下,提出了以充电站年总成本最小、用户满意度指标最优的充电站/光伏电站一体化规划方法.最后,通过算例仿真,基于对各个场景下经济性与满意度等指标的权衡考量,求得了充电站/光伏电站一体化规划方案.
Integrated planning method of charging station/PV integrated station based on AP clustering algorithm
The weight of PV(photovoltaic)output characteristic index is constructed based on entropy weight method,and the typical scenarios are generated by AP(adaptive clustering)lustering algorithm.Considering the time-space distribution characteristics of EV(ectric vehicle)oad and demand response ability,the load linkage time-space response model is established.Based on the optimization of charging sequence and spatial layout of EV,the multi-objective planning method for charging station/PV station is proposed with meetting the distance constraints of charging stations and network constraints,which target the minimum annual total cost of charging station and the optimal index of user satisfaction.Case study,the integrated planning scheme of charging station/PV station is obtained based on the trade-off between economy and satisfaction in each scenario.

charging station planningelectric vehicleAP clustering algorithmcustomer satisfaction

陈泫光、刘俊勇、李林果、梅亦蕾、籍雁南

展开 >

四川大学 电气工程学院,四川 成都 610065

国网四川省电力公司成都供电公司,四川 成都 610041

充电站规划 电动汽车 AP聚类 用户满意度

国家重点研发计划项目

2018YFB0905200

2024

可再生能源
辽宁省能源研究所 中国农村能源行业协会 中国资源综合利用协会可再生能源专委会 中国生物质能技术开发中心 辽宁省太阳能学会

可再生能源

CSTPCD北大核心
影响因子:0.605
ISSN:1671-5292
年,卷(期):2024.42(10)
  • 18