首页|基于改进灰狼优化算法的多区域虚拟电厂协调优化调度技术

基于改进灰狼优化算法的多区域虚拟电厂协调优化调度技术

扫码查看
为促进"双碳"目标的实现,通过电力低碳化的方式对不同地区虚拟电厂中分布式新能源进行协调优化调度,提出基于灰狼优化算法的多区域虚拟电厂协调优化调度技术。首先,构建经济效益最优的运行优化模型,将不同区域虚拟电厂分布式新能源互联,联合调度风、光发电机组与碳捕集机组;其次,由于构建的模型具有求解难度大、非线性强、维度高的问题,因此利用灰狼优化算法搜索效率高、收敛速度快、优化参数少的优点,对模型进行寻优求解,与此同时,提出了一种改进灰狼优化算法,提高了算法的全局寻优能力,解决了算法后期容易出现早熟以及局部最优的问题;最后,经过仿真分析,验证了所提方法能够实现不同地区虚拟电厂优化调度,降低了其碳排放量和净成本。
Coordinated optimization scheduling technology for multiregion virtual power plants based on improved Grey Wolf Optimization Algorithm
To promote the realization of the"dual carbon"goal,the distributed new energy in different regions of the virtual power plant is coordinated and optimized through low-carbon power generation.A multi region virtual power plant coordinated and optimized scheduling technology based on the Grey Wolf Optimization Algorithm is proposed.Firstly,construct an operational optimization model with the best economic benefits,connecting virtual power plants in different regions with distributed new energy,and jointly scheduling wind and solar power generation units and carbon capture units;Secondly,due to the difficulty in solving,strong nonlinearity,and high dimensionality of the constructed model,the advantages of the Grey Wolf Optimization Algorithm such as high search efficiency,fast convergence speed,and few optimization parameters are utilized to optimize the model.At the same time,an improved Grey Wolf Optimization Algorithm is proposed to improve the algorithm's global optimization ability and solve the problem of premature and local optima in the later stage of the algorithm;Finally,through simulation verification,the proposed method can achieve optimal scheduling of virtual power plants in different regions,reducing carbon emissions and net costs.

low carbon electricityvirtual power plantdistributed new energyGrey Wolf Optimization Algorithmoptimize scheduling

戴观权、潘凯岩、蔡莹、林国彪、曾顺奇、黄宇翔、刘晓婕

展开 >

广东电网有限责任公司广州供电局,广东 广州 518000

东方电子股份有限公司,山东 烟台 264000

华南理工大学,广东 广州 510641

电力低碳 虚拟电厂 分布式新能源 灰狼优化算法 优化调度

2024

可再生能源
辽宁省能源研究所 中国农村能源行业协会 中国资源综合利用协会可再生能源专委会 中国生物质能技术开发中心 辽宁省太阳能学会

可再生能源

CSTPCD北大核心
影响因子:0.605
ISSN:1671-5292
年,卷(期):2024.42(12)