首页|基于机器视觉的篮球运动员行为跟踪识别系统

基于机器视觉的篮球运动员行为跟踪识别系统

扫码查看
篮球赛场上运动员行为轨迹跟踪技术存在识别误差大、效率低等问题,为此基于机器视觉技术提出一种更加有效的篮球运动员行为跟踪识别方法.基于机器视觉设计篮球运动员行为采集子系统,对摄像机采集的帧图像实施精准预处理作为运动员行为轮廓识别的样本数据;构建篮球运动员行为跟踪识别子系统,利用边缘轮廓信息描述运动员的行为特征,使用高斯混合模型初步提取篮球运动员轮廓信息,检测行为边缘轮廓角点完成边缘轮廓特征提取;进一步得到轮廓点分布直方图,以此为依据使用金字塔匹配算法识别运动员的行为轨迹,实现运动员边缘轮廓优化提取.测试结果表明,该方法跟踪运动员行为的误检率约在0.4%~1.3%之间,漏检曲线趋于水平状态且不大于1%,跟踪识别篮球运动员行为的实际应用效果较优.
Behavior tracking and recognition system of basketball players based on machine vision
In the tracking technology employed to monitor the athletes'behavioral trajectory in basketball games,there are problems such as significant recognition error and low efficiency.In light of this,a more effec-tive method for tracking and recognising the basketball players'behavior based on machine vision technology is proposed.A basketball player behaviour acquisition sub-system based on machine vision is designed to implement accurate pre-processing of frame images captured by the camera for player behaviour profile recog-nition;and a Gaussian mixture model is used to initially extract basketball players'contour information,detect behavioral edge contour corner points to complete the optimization of edge contour feature extraction.The con-tour point distribution histogram is further obtained,based on which the pyramid matching algorithm is used to identify the behavioral trajectory of the athlete.The test results show that the false detection rate of this method for tracking athletes'behavior is approximately between 0.4%and 1.3%,and the leakage curve exhibitss a horizontal tendency,with a maximum value of less than 1%,which enhances the practical implimentaion of tracking and identifying the basketball players'behavior.

basketball playersmachine visionbehavior trackingedge contourhistogrampyramid matching

张瑞全

展开 >

滁州城市职业学院 体育教学部,安徽 滁州 239000

篮球运动员 机器视觉 行为跟踪 边缘轮廓 直方图 金字塔匹配

安徽省高等学校哲学社会科学重点研究项目安徽省高等学校人文社会科学重点研究项目

2023AH0528382024AH052923

2024

宁德师范学院学报(自然科学版)
宁德师范学院

宁德师范学院学报(自然科学版)

影响因子:0.303
ISSN:2095-2481
年,卷(期):2024.36(3)