首页|改进YOLOv5的变电站反无人机目标检测算法

改进YOLOv5的变电站反无人机目标检测算法

扫码查看
针对目前变电站容易遭遇无人机入侵所面临的实际问题提出了一种改进YOLOv5的反无人机目标检测方法.首先,通过改进YOLOv5原模型结构提出四尺度特征融合结构,增强小尺度物体的检测能力;其次,将原有模型内C3模块引入Transformer编码器,提升小目标特征信息学习能力;最后,将卷积通道注意力模块集成到网络中,专注于目标区域的学习以提升模型对于特征的表征能力.测试结果表明,改进后模型整体识别率达到90.2%,平均精度可达89.5%,前向推理速度可达160帧/s.此外,综合对比现有其他前沿算法,该方法整体性能更优,更能满足变电站反无人机的实时检测需求.
Anti UAV Target Detection Algorithm for Substation Based on Improved YOLOv5
Aiming at the practical problem that substations are prone to encounter unmanned aerial vehicle(UAV)intrusion,an improved anti UAV target detection method is proposed based on YOLOv5.Firstly,a four scale features fusion structure is proposed by improving the original model structure of YOLOv5 to enhance the detection capability of small-scale objects.Secondly,the C3 module in the original model is introduced into the Transformer encoder to improve the learning ability of small target feature information.Finally,the convolution channel attention module is integrated into the network,focusing on the learning of the target area to improve the representation ability of the model for features.The test results show that the overall recognition rate of the improved model is 90.2%,the average accuracy is 89.5%,and the forward reasoning speed is 160 frames per second.In addition,compared with other existing frontier algorithms,the overall performance of this method is better,and it can better meet the real-time detection requirements of anti UAV in substations.

target detectionYOLOv5anti UAVchannel attention mechanismTransformer encoder

叶采萍、陈炯、马显龙、胡宗杰

展开 >

上海电力大学电气工程学院,上海 200090

云南电网有限责任公司电力科学研究院,昆明 650217

目标检测 YOLOv5 反无人机 通道注意力机制 Transformer编码器

云南省基础研究计划中国南方电网有限责任公司科技项目

202001AT070006YNKJXM20220051

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(2)
  • 33