首页|基于分段动态时间弯曲距离的高损线路窃电检测方法

基于分段动态时间弯曲距离的高损线路窃电检测方法

扫码查看
利用高损线路中窃电用户用电量与线损电量之间的关联关系识别窃电用户,是降低窃电检测误报率的重要途径,但相关方法对用户负荷时序平稳性等方面有严格要求,限制了其工程应用.提出了基于分段动态时间弯曲距离的高损线路窃电用户识别方法.首先,运用启发式分割算法对各用户用电量序列和线损电量序列进行数据变换,实现特征提取和数据降维;然后,利用动态时间弯曲距离找出与线损电量形态最相似的用户用电量,分析它们之间的联动性;最后,提出基于分段动态时间弯曲的密度聚类方法,实现用户用电量聚类,得到具有相同波动方向的用电量簇集,并将与线损电量形态上最相似且波动方向相同的用电电量所对应的用户定为窃电嫌疑用户.基于高损线路的实际数据进行算例仿真,结果表明所提方法相较于对比方法具有更好的精确度及更低的误报率.
High-Loss Line Stealing Identification Method Based on the Segment Dynamic Time Bending Distance
Identifying electricity theft user with correlation between electricity usage of user and line loss of associated feeder could facilitate electricity theft detection with low false positive rate.However,most existing approaches have stringent requirement on stability of time series of load data,which hinder engineering application of these approaches.A high-loss line theft user identifica-tion method based on segmented dynamic time bending distance is proposed.Firstly,the heuristic segmentation algorithm is used to transform the data of each user's power consumption sequence and line loss power consumption sequence to achieve feature extrac-tion and data reduction.Secondly,dynamic time bending distance is employed to find out the user's power consumption most similar to the line loss power consumption pattern,and the linkage between them is analyzed.Finally,the corresponding user corresponding to the power consumption in the most similar pattern of line loss and the same fluctuation direction is designated as the suspected user of electricity theft.Based on the actual data of high-loss lines,the simulation results show that the proposed method has better ac-curacy and lower false positive rate than the comparison method.

high-loss lineheuristic segmentation algorithmdynamic time bending distancedensity clustering

魏梅芳、阳靖、黄頔、苏盛

展开 >

国网湖南省电力有限公司技术技能培训中心,长沙 410131

国网湖南省电力有限公司长沙供电分公司,长沙 410004

长沙理工大学电气与信息工程学院,长沙 410114

高损线路 启发式分割算法 动态时间弯曲距离 密度聚类

国家自然科学基金项目湖南省自然科学基金项目国网湖南省电力有限公司2022年科技项目

517770152022JJ600895216AP21N001

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(8)