首页|基于深度PCA与贝叶斯优化的区块链异常交易检测

基于深度PCA与贝叶斯优化的区块链异常交易检测

扫码查看
区块链复杂的交易场景与丰富的交易模式使其交易频繁受到匿名攻击、庞氏骗局、钓鱼攻击等违法行为的威胁,给基于区块链技术的智能电网发展带来巨大经济风险.针对区块链异常交易检测综合性能差的问题,分析了交易数据维度高、正负样本不均衡的特点,提出了一种基于深度主成分分析(principal component analysis,PCA)与贝叶斯优化的区块链异常交易检测方法.该方法设计深度PCA模型实现区块链交易数据线性与非线性降维,通过贝叶斯优化算法解决随机森林超参数优化问题,运用优化后的随机森林分类器有效应对正负样本不均衡问题,最终实现区块链异常交易检测.基于Elliptic数据集与电网区块链交易数据集的实验结果表明,所提方法有效提升了区块链异常交易检测的综合性能.
Blockchain Abnormal Transaction Detection Based on Deep PCA and Bayesian Optimization
Due to the complex trading scenarios and rich trading modes of blockchain,blockchain transactions are frequently threatened by illegal behaviors such as anonymous attacks,Ponzi schemes,phishing attacks,etc.These abnormal behaviors cause huge economic risks to the development of smart grid based on blockchain technology.Aiming at the problem of poor comprehensive performance of blockchain abnormal transaction detection,the characteristics of high data dimensions and imbalanced positive and negative samples of transaction data are analyzed.A blockchain abnormal transactions detection method based on deep principal component analysis(PCA)and Bayesian optimization is proposed.By designing the deep PCA model,linear and nonlinear dimensionality reduction of blockchain transaction data is achieved.The Bayesian optimization is employed to optimize the random forest hyper-parameters,and the optimized random forest classifier is utilized to effectively solve the problem of unbalanced positive and negative samples.And finally abnormal transactions are detected in the blockchain.The experiments based on Elliptic and power grid blockchain transaction datasets show that the proposed method improves the comprehensive performance of blockchain abnormal transaction detection.

blockchainabnormal transaction detectionprincipal component analysisBayesian optimizationrandom forest

王栋、李达、王合建

展开 >

国家电网区块链应用技术实验室(国网区块链科技(北京)有限公司,国网数字科技控股有限公司),北京 100053

区块链 异常交易检测 主成分分析 贝叶斯优化 随机森林

国家重点研发计划资助项目国网数字科技控股有限公司科技项目

2018YFB08050059200/2023-72001B

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(9)
  • 14