首页|基于CNN-GRU深度学习的模块化多电平矩阵变换器故障诊断

基于CNN-GRU深度学习的模块化多电平矩阵变换器故障诊断

扫码查看
模块化多电平矩阵变换器(modular multilevel matrix converter,M3C)是一种用于海上风力发电的低频电力传输AC-AC变换器.为了提高M3C工作的可靠性和稳定性,对其子模块中IGBT(insulated gate bipolar transistor)的开路故障需要有高效准确的诊断方法,为此提出了基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated loop unit,GRU)相结合的深度学习故障诊断方法.在对M3C子模块运行工况分析基础上对原始故障数据进行小波包分析,并通过时序图像转换将其中高频分量转化为二维故障图片作为深度学习的训练及验证数据集,经过CNN对高维数据的特征提取,再通过GRU对数据进行优化训练,实现了对M3C故障类别的诊断识别.所提方法相比传统方法具有更加准确、快速的故障诊断能力.
Fault Diagnosis of Modular Multilevel Matrix Converter Based on CNN-GRU Deep Learning
Modular multilevel matrix converter(M3C)is a low-frequency power transmission AC-AC converter used for offshore wind power generation.In order to improve the reliability and stability of M3C operation,it is necessary to have an efficient and ac-curate diagnosis method for the open circuit fault of IGBT in its submodules.Therefore,a deep learning fault diagnosis method based on the combination of convolutional neural network(CNN)and gated loop unit(GRU)is proposed.On the basis of analyzing the operating conditions of M3C submodule,wavelet packet analysis is performed on the original fault data,the high-frequency components of which are converted into two-dimensional fault images through temporal image conversion as the training and valida-tion dataset for deep learning,and the features of the high-dimensional data are extracted by CNN,and then the data is optimized and trained by GRU,so as to realize the diagnosis identification of the M3C fault categories.Compared to traditional methods,this method has more accurate and fast fault diagnosis capabilities.

modular multilevel matrix converterwavelet packet analysisconvolutional neural networkgate recurrent unitfault diagnosis

朱晋、程启明、程尹曼

展开 >

上海电力大学自动化工程学院,上海 200090

上海电力公司市北供电分公司,上海 200041

模块化多电平矩阵变换器 小波包分析 卷积神经网络 门控循环单元 故障诊断

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(11)