首页|考虑多变量建模的中期负荷预测模型

考虑多变量建模的中期负荷预测模型

扫码查看
中期负荷预测受温度、节假日和周末等多个外部变量影响.长短时记忆网络(long short-term memory,LSTM)虽然在短期负荷预测中展现了强大的预测能力,但不能很好地建立起中期负荷预测多外部变量与预测负荷之间的相关关系.针对上述问题,提出了并行LSTM结构以及时间序列N节点树形LSTM(time-series N-node tree-LSTMs,t-N Tree-LSTMs)结构,通过引入分支结构和树形结构构建更细的特征粒度实现对中期负荷预测的建模.最后在2017年全球能源预测大赛数据集GEFCom2017上进行实验,结果表明在中期负荷预测过程中更细的特征粒度有利于获取更高精度的预测结果,验证了并行LSTM模型和t-N Tree-LSTMs模型的有效性.
Medium-Term Load Forecasting Model Considering Multivariate Modeling
Medium-term load forecasting is influenced by multiple external variables such as temperature,holidays,and weekends.Although long short-term memory(LSTM)networks have shown strong predictive ability in short-term load forecasting,they cannot establish a good correlation between multiple external variables and predicted load in medium-term load forecasting.To address the above issues,parallel LSTM structures and time series N-node tree LSTM(t-N Tree LSTM)structures are proposed.By introducing branch structures and tree structures to construct finer feature granularity,modeling of medium-term load forecasting is achieved.Finally,experiments are conducted on the 2017 global energy forecasting competition dataset GEFCom2017,and the results show that finer feature granularity is beneficial for obtaining higher accuracy prediction results in the medium-term load forecasting process,verifying the effectiveness of the parallel LSTM model and t-N Tree LSTMs model.

medium-term load forecastingLSTMtime seriesfeature granularity

徐利美、赵金、李裕民、姚非、邢吉伟、续欣莹

展开 >

国网山西省电力公司,太原 030000

国网山西省电力公司电力科学研究院,太原 030001

山西电力交易中心有限公司,太原 030021

国网太原供电公司,太原 030012

太原理工大学电气与动力工程学院,太原 030024

展开 >

中期负荷预测 长短时记忆网络 时间序列 特征粒度 多变量建模

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(11)