首页|基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测

基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测

扫码查看
为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测.首先,采用Pearson相关系数进行特征选择以去除与光伏输出功率不相关的气象特征;其次,针对相似气象情况下光伏电站发电功率接近的实际情况,采用灰色关联分析(gray relation analysis,GRA)选取与预测日气象特征相似的日期作为训练集;然后,提出一种改进鲸鱼算法(improved whale algorithm,IWOA)来优化LSTM深度神经网络的超参数,使预测模型的均方根误差达到最小;最后,以澳洲Yulara沙漠3号光伏电站的光伏发电历史数据作为实验数据,用GRA-IWOA-LSTM神经网络模型进行预测.仿真结果表明,在不同的天气类型下与其他模型的预测效果相比,GRA-IWOA-LSTM模型的预测结果精度更高.
Short-Term Prediction of Photovoltaic Power Based on Similar Day Analysis and Improved Whale Algorithm to Optimize LSTM Network Model
In order to solve the constraints of many factors such as ambient temperature,wind speed and solar irradiance on photovoltaic power generation prediction,a long short-term memory(LSTM)neural network model based on similar day analysis and improved whale algorithm optimization to realize short-term prediction of photovoltaic power is proposed.Firstly,the Pearson correlation coefficient is used for feature selection to remove meteorological characteristics that are not correlated with the output power of photovoltaics.Secondly,according to the actual situation that the power generation of photovoltaic power plants is close under similar meteorological conditions,gray relation analysis(GRA)is used to select dates similar to the meteorological characteristics of the forecast day as the training set.Then,an improved whale algorithm(IWOA)is proposed to optimize the hyperparameters of LSTM deep neural network to minimize the root mean square error of the prediction model.Finally,the historical data of photovoltaic power generation of Yulara Desert No.3 photovoltaic power station in Australia is used as experimental data,and the GRA-IWOA-LSTM neural network model is used to make predictions.The simulation results show that the prediction results of the GRA-IWOA-LSTM model are more accurate than the prediction effects of other models under different weather types.

similar dayshort-term prediction of photovoltaic powergrey relation analysisimproved whale optimization algorithmlong short-term neural network

薛阳、李金星、杨江天、李清、丁凯

展开 >

上海电力大学自动化工程学院,上海 200090

相似日 光伏功率短期预测 灰色关联分析 改进鲸鱼优化算法 长短期记忆神经网络

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(11)