首页|基于X-DR图像与YOLO-MS模型的输电线路耐张线夹压接缺陷检测

基于X-DR图像与YOLO-MS模型的输电线路耐张线夹压接缺陷检测

扫码查看
针对输电线路耐张线夹压接质量检测产生的海量X-DR图像,提出一种基于YOLO-MS模型的压接缺陷智能识别方法.根据耐张线夹压接质量现场检测图像,构建6类典型压接缺陷的X-DR图像数据集,并对其进行高斯滤波、直方图均衡化、伽马校正等预处理.利用CSPDarknet、CBAM-PANet以及Head-4构建多尺度(multi-scale,MS)目标检测网络YOLO-MS,并使用数据集中训练样本与测试样本对模型进行训练与测试.结果表明,所提出的YOLO-MS模型能够有效检测6类耐张线夹压接缺陷,平均精度均值可达92.57%,检测速度为26帧/s,可用于辅助输电线路运维人员开展耐张线夹压接图像的自动识别与缺陷检测.
Crimping Defect Detection of Transmission Line Strain Clamp Based on X-DR Image and YOLO-MS Model
Aiming at the massive X-DR images generated by crimping quality detection of transmission line strain clamps,an intel-ligent recognition method for crimping defects is proposed based on YOLO-MS model.A X-DR image dataset including 6 typical crimping defects is constructed using the field crimping quality detection images of strain clamps,and the image preprocessing is car-ried out by Gaussian filtering,histogram equalization,and gamma correction.The multi-scale(MS)object detection network YOLO-MS is constructed using CSPDarknet,CBAM-PANet,and Head-4.The model is trained and tested using concentrated training and testing samples from a dataset.The results show that the YOLO-MS model can effectively detect 6 types of strain clamp crimping defects,with a mean average precision of 92.57%,and a detection speed of 26 frames per second.It can be used to assist transmis-sion line operation and maintenance personnel to carry out automatic recognition and defect detection of strain clamp crimping images.

transmission linestrain clampX-ray imagecrimping qualitydefect detection

李俊轩、邱志斌、石大寨、张润、李攀

展开 >

南昌大学 能源与电气工程系,南昌 330031

国网安徽省电力有限公司池州供电公司,安徽 池州 247000

江西大荣电力设备有限公司,南昌 330096

输电线路 耐张线夹 X射线图像 压接质量 缺陷检测

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(11)