首页|基于变分自编码器和注意力Seq2Seq模型的风电功率预测

基于变分自编码器和注意力Seq2Seq模型的风电功率预测

扫码查看
针对风电场功率影响因素多、有效数据量小、预测时序长的复杂特点,提出了基于变分自编码器和注意力Seq2Seq模型的风电功率预测方法.采集测风塔数据和对应的连续功率值构造样本集,利用变分自编码器模型将样本进行数据增强,从而获得足够多的样本用于支撑预测模型训练;构建从测风塔多个监测指标到连续功率值的回归分析模型,充分挖掘不同指标与功率值的映射关系;将扩充后的不同指标分别输入到注意力Seq2Seq模型中进行指标时序预测,并将数值天气预报数据用于修正预测结果,从而得到更准确的指标加权预测结果;将实时获取的测风塔和数值天气预报数据输入到训练好的加权预测模型和回归分析模型中,实现风电功率的多步预测.利用风电场站实际运行数据集进行了模型验证,结果表明:与传统时序预测方法相比,基于变分自编码器和注意力Seq2Seq模型能够在较小的重构误差下得到更准确的风电功率预测结果.
Wind Power Prediction Based on Variational Autoencoder and Attention-Based Seq2Seq Model
A method for wind power prediction based on variational autoencoder and attention-based Seq2Seq model is proposed to address the complex characteristics of multiple influencing factors,limited amount of effective data,and long time series.The method involves collecting wind tower data and corresponding continuous power values to construct a sample set.Then,variational autoencoder model is used to augment the samples,and generate sufficient samples to support the training of the prediction model.A regression analysis model is built to explore the mapping relationship between multiple monitoring indicators from the wind towers and the continuous power values.The augmented different indicators are separately input into an attention-based Seq2Seq model for indicator time series prediction.Numerical weather forecast data is used to refine the prediction results,yielding more accurate weighted prediction results for the indicators.By inputting real-time wind tower data and numerical weather forecast data into the trained weighted prediction model and regression analysis model,multi-step wind power prediction can be achieved.The proposed method is validated using actual operational data from wind farms.The results show that compared to traditional time series predic-tion methods,the approach based on variational autoencoder and attention-based Seq2Seq model provides more accurate wind power predictions with smaller reconstruction errors.

variational autoencoderattention mechanismSeq2Seq-based modelwind power prediction

李辰龙、李逗、车畅畅、潘苗、高进

展开 >

江苏方天电力技术有限公司,南京 211102

南京林业大学汽车与交通工程学院,南京 210037

变分自编码器 注意力机制 注意力Seq2Seq模型 风电功率预测

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(12)