首页|基于计量数据挖掘分析的分布式光伏系统故障感知

基于计量数据挖掘分析的分布式光伏系统故障感知

扫码查看
分布式光伏系统点多面广,加之可用数据严重匮乏,难以及时感知设备故障,容易长期带故障运行,降低生命周期发电量.利用光伏系统故障异常最终会影响发电出力的特点提出了一种基于计量数据的分布式光伏故障感知方法.首先分析晴天的太阳辐照度特性,提出晴空日筛选机制,对不同电站进行相关性分析,获取出力相关性高的光伏电站作为横向参考;再选择待测电站不同晴空日的出力曲线进行纵向对比,以排除异常检测中的各类干扰因素;将排除干扰的出力数据输入时间卷积网络分位数回归(quantile regression temporal convolutional network,QRTCN)模型,拟合出光伏正常出力区间后,即可根据正常出力区间识别故障异常的分布式光伏电站.运用实际光伏系统数据的仿真分析表明,所提方法能准确识别出存在故障异常的分布式光伏系统,推动分布式光伏的精细化运维.
Distributed Photovoltaic System Anomaly Detection Based on Metering Data Mining Analysis
Distributed photovoltaic system has wide range of points,coupled with a severe lack of available data,making it difficult to detect equipment failures in a timely manner,and is prone to long-term operation with faults,reducing the life cycle power genera-tion.An anomaly detection method of distributed photovoltaic system based on measurement data is proposed,taking advantage of the characteristic that abnormal faults in photovoltaic system will ultimately affect power generation output.Firstly,the characteristics of solar irradiance on sunny days are analyzed,and a clear sky day screening mechanism is proposed,conducting cor-relation analysis on different power stations,and obtaining photovoltaic power stations with high output correlation as horizontal refer-ences.Then the output curves of the tested power station on different clear days for longitudinal comparison are selected to eliminate various interference factors in abnormal detection.The output data excluding the above interference is input into the quantile regres-sion temporal convolutional network model for training to obtain the fitting range of photovoltaic normal output,and then abnormal output of distributed photovoltaic power station is detected according to the normal output range.The simulation analysis using actual photovoltaic system data shows that the proposed method can accurately identify distributed photovoltaic systems with faults and anomalies,promoting the refined operation and maintenance of distributed photovoltaics.

distributed photovoltaicanomaly detectionclear sky dayquantile regressiontemporal convolutional networkcor-relation analysis

刘锦宁、吴裕宙、苏盛、王晓倩

展开 >

广东电网有限责任公司东莞供电局,广东 东莞 523008

长沙理工大学电气与信息工程学院,长沙 410014

分布式光伏 故障感知 晴空日 分位数回归 时间卷积网络 相关性分析

2024

南方电网技术
南方电网科学研究所有限责任公司

南方电网技术

CSTPCD北大核心
影响因子:1.42
ISSN:1674-0629
年,卷(期):2024.18(12)