首页|基于气象因素的长江经济带湖北段夏季日最大电力负荷预测

基于气象因素的长江经济带湖北段夏季日最大电力负荷预测

扫码查看
[目的]利用气候预测模式的气温数据对未来长江经济带湖北段武汉、黄石、宜昌夏季日最大电力负荷进行预测.[方法]基于武汉、黄石、宜昌2008~2019年逐日最大电力负荷数据、同期平均气温、最高气温、最低气温等气象要素资料以及RegCM4区域气候模式预测数据,对3个地区的气象敏感电力负荷特性进行分析.在此基础上,通过回归法和群粒子优化BP神经网络算法,对未来(2020~2096年)日最大电力负荷进行定量滚动预测.[结果]结果表明,夏季平均气温与气象敏感负荷关联度最大.预测武汉和宜昌两地的夏季日最大电力负荷相似,两种预测值较近10a日最大电力负荷稳步增长,回归预测的增长率要略高于神经网络预测;宜昌增长率比武汉高,最高超过40%.黄石日最大电力负荷的预期值较其他两地呈现出明显不同预测结果.[结论]预测长江经济带的中大型城市夏季日最大电力负荷的变化规律,有助于规划未来所需额外的电网容量.
Prediction of Summer Daily Maximum Power Load in the Hubei Section of the Yangtze River Economic Belt Based on Meteorological Factors
[Introduction]This study focuses on the prediction of summer daily maximum power load in Wuhan,Huangshi,and Yichang of the Hubei section in the Yangtze River Economic Belt based on climatic forecast model temperature data.[Method]By analyzing the daily maximum power load data from 2008 to 2019,along with meteorological elements such as average temperature,maximum temperature,minimum temperature,and regional climate model(RegCM4)forecast data,the characteristics of meteorologically sensitive power load in the three regions were analyzed.Regression analysis and a group-particle optimized back-propagation(BP)neural network algorithm were used to quantitatively predict the future(from 2020 to 2096)daily maximum power load.[Result]The results indicate that there is a significant correlation between summer average temperature and meteorologically sensitive load.The predicted values of the summer daily maximum power load in Wuhan and Yichang show a steady increase similar to the past decade,with the growth rate of regression prediction slightly higher than that of neural network prediction.The growth rate in Yichang is higher than that in Wuhan,exceeding 40%at its peak.The expected values of the daily maximum power load in Huangshi show distinctly different prediction results compared to the other two locations.[Conclusion]Predicting the variation patterns of summer daily maximum power load in medium-to-large cities along the Yangtze River Economic Belt is beneficial for planning the required additional grid capacity in the future.

Hubei section of the Yangtze River Economic Beltmeteorological factorsmodel predictionmaximum power loadneural network

王丽娟、任永建、王俊超、欧阳威

展开 >

湖北省气象服务中心,湖北武汉 430205

中国气象局武汉暴雨研究所暴雨监测预警湖北省重点实验室,湖北武汉 430205

长江经济带湖北段 气象因素 模式预测 最大电力负荷 神经网络

中国气象局气候变化专项

CCSF202033

2024

南方能源建设
南方电网数字传媒科技有限公司,中国能源建设集团广东省电力设计研究院有限公司

南方能源建设

ISSN:2095-8676
年,卷(期):2024.11(1)
  • 22