首页|基于CNN-BiLSTM及ResNet网络的板中损伤TFM定位与检测研究

基于CNN-BiLSTM及ResNet网络的板中损伤TFM定位与检测研究

扫码查看
针对全聚焦(Total Focusing Method,TFM)成像技术因其耗时长,在工业应用中受限的问题,提出一种基于CNN-BiLSTM(Convolutional Neural Network-Bi-directional Long Short-Term Memory)网络的快速 TFM成像方法,首先利用卷积神经网络从全矩阵数据中提取关键特征,接着结合双向长短期记忆网络来预测金属板上损伤的区域位置,再使用TFM技术在损伤区域进行精确成像.为了进一步提升损伤检测的准确性,引入基于ResNet网络的损伤尺寸检测方法以实现对损伤大小的精确检测.为了验证方法的有效性,利用有限元分析软件ABAQUS建立三维铝板仿真模型,并通过模型变换构建神经网络数据集.实验结果表明,与传统全聚焦成像方法相比,CNN-BiLSTM网络展现出较高的区域定位精度,定位准确率达到95.26%,并具有显著的效率优势,平均定位速度提升了 46.4%;同时,损伤尺寸大小的检测结果验证了基于ResNet网络的方法在损伤尺寸评估方面的有效性和准确性,在测试集上达到了 99.26%的准确率.
Research on TFM localization and detection of damage in plates based on CNN-BiLSTM and ResNet networks
To address the limitations of Total Focusing Method(TFM)imaging technology in industrial applications due to its time-consuming nature,this paper presents a rapid TFM imaging approach based on a CNN-BiLSTM(Convolutional Neural Network-Bi-directional Long Short-Term Memory)network.This method initially employs a CNN to extract key features from the full matrix data,followed by leveraging a BiLSTM network to predict the location of the damage on metal plates.Subsequently,TFM technology is used for precise imaging in the damaged areas.Furthermore,to enhance the accuracy of the damage detection,this paper also introduces a damage size detection method based on the ResNet network to achieve precise measurement of the damage size.To validate the effectiveness of the proposed method,a three-dimensional aluminum plate simulation model was established using the finite element analysis software ABAQUS,and a neural network dataset was constructed through model transformation.Experimental results demonstrate that compared to traditional TFM imaging methods,the CNN-BiLSTM network exhibits higher region localization precision,with an accuracy rate of 95.26%,and a significant efficiency advantage,with an average positioning speed increased by 46.4%.Additionally,the detection results of the damage size have validated the effectiveness and accuracy of the method based on the ResNet network in damage size assessment,achieving an accuracy rate of 99.26%on the test set.

Lamb wavesTFMdamage detectionCNN-BiLSTMResNet

颜劲夫、何其骏、瞿业峰、李义丰

展开 >

南京工业大学计算机与信息工程学院(人工智能学院),南京,211800

近代声学教育部重点实验室,南京大学声学研究所,南京,210093

Lamb波 TFM 损伤检测 CNN-BiLSTM ResNet

国家自然科学基金江苏省研究生科研与实践创新计划

61571222SJCX24_0563

2024

南京大学学报(自然科学版)
南京大学

南京大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.756
ISSN:0469-5097
年,卷(期):2024.60(4)