首页|针对推荐系统的隐蔽虚假用户数据的黑盒对抗攻击

针对推荐系统的隐蔽虚假用户数据的黑盒对抗攻击

扫码查看
攻击者将设计好的对抗样本(即虚假用户)注入目标推荐系统以达到非法目的,严重影响推荐系统的安全性和可靠性.实际场景中攻击者难以获取目标模型的详细知识,利用梯度优化在局部代理模型中生成对抗样本成为一种有效的黑盒攻击策略,然而,这些方法存在梯度陷入局部极小值的问题,限制了对抗样本的迁移能力,降低了攻击的有效性,并且往往没有充分考虑生成的对抗样本的不可察觉性.针对这些挑战,提出一种新的攻击算法PGMRS-KL,结合预梯度引导的动量梯度优化策略和Kullback-Leibler(KL)散度约束的假用户生成.具体地,将累积的梯度方向与上一步的梯度方向相结合以迭代更新对抗样本,并利用KL损失最小化假用户数据与真实用户数据之间的分布距离,实现对抗样本的高可迁移性和不可感知性.实验结果证明,提出的方法在攻击可转移性和不可察觉的虚假用户数据生成方面优于最先进的基于梯度的攻击算法.
Black-box adversarial attacks with imperceptible fake user profiles for recommender systems
Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attackers to obtain detailed knowledge of the target model in actual scenarios,so using gradient optimization to generate adversarial samples in the local surrogate model has become an effective black-box attack strategy.However,these methods suffer from gradients falling into local minima,limiting the transferability of the adversarial samples.This reduces the attack's effectiveness and often ignores the imperceptibility of the generated adversarial samples.To address these challenges,we propose a novel attack algorithm called PGMRS-KL that combines pre-gradient-guided momentum gradient optimization strategy and fake user generation constrained by Kullback-Leibler divergence.Specifically,the algorithm combines the accumulated gradient direction with the previous step's gradient direction to iteratively update the adversarial samples.It uses KL loss to minimize the distribution distance between fake and real user data,achieving high transferability and imperceptibility of the adversarial samples.Experimental results demonstrate the superiority of our approach over state-of-the-art gradient-based attack algorithms in terms of attack transferability and the generation of imperceptible fake user data.

recommendation systemsadversarial examplestransferabilityimperceptible

钱付兰、刘景刚、陈海、陈文斌、赵姝、张燕平

展开 >

安徽大学人工智能研究所,合肥,230601

计算智能与信号处理教育部重点实验室,安徽大学,合肥,230601

安徽省信息材料与智能感知实验室,安徽大学,合肥,230601

推荐系统 对抗样本 可转移性 不可察觉性

2024

南京大学学报(自然科学版)
南京大学

南京大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.756
ISSN:0469-5097
年,卷(期):2024.60(6)