首页|面向多传感器自由曲面测量与重构的聚合价值主动采样方法

面向多传感器自由曲面测量与重构的聚合价值主动采样方法

扫码查看
自由曲面测量是航空航天领域产品质量控制与逆向工程等的关键基础技术.基于激光扫描仪、接触式探针等多传感器融合的曲面测量技术能够结合不同传感器的互补特性,目前在工业界与学术界广受关注,测量点的数量与分布会显著影响多传感器融合的效率和曲面重建的精度.提出了一种面向多传感器融合自由曲面测量与重构的聚合价值采样方法,基于博弈论迭代式主动生成探针测量点,将自由曲面上每个测量点对多传感器融合的重要性显示地定义为测量点的Shapley值,从而将最优测量点集合获取问题转换为样本集合的聚合价值最大化问题.仿真和真实测量结果验证了本方法能够在保证多传感器融合测量精度的情况下显著降低所需的探针样本量.
Aggregation-Value-Based Active Sampling Method for Multi-sensor Freeform Surface Measurement and Reconstruction
Freeform surface measurement is a key basic technology for product quality control and reverse engineering in aerospace field.Surface measurement technology based on multi-sensor fusion such as laser scanner and contact probe can combine the complementary characteristics of different sensors,and has been widely concerned in industry and academia.The number and distribution of measurement points will significantly affect the efficiency of multi-sensor fusion and the accuracy of surface reconstruction.An aggregation-value-based active sampling method for multi-sensor freeform surface measurement and reconstruction is proposed.Based on game theory iteration,probe measurement points are generated actively,and the importance of each measurement point on freeform surface to multi-sensor fusion is clearly defined as Shapley value of the measurement point.Thus,the problem of obtaining the optimal measurement point set is transformed into the problem of maximizing the aggregation value of the sample set.Simulation and real measurement results verify that the proposed method can significantly reduce the required probe sample size while ensuring the measurement accuracy of multi-sensor fusion.

multi-sensor fusionmulti-sensor measurementdata samplingactive learningShapley valueintelligent sampling

陈耿祥、李迎光、MEHDI-SOUZANI Charyar、刘旭

展开 >

南京航空航天大学机电学院,南京 210016,中国

巴黎萨克雷大学,伊维特河畔吉夫 91190,法国

南京工业大学机械与动力工程学院,南京 211816,中国

多传感器融合 多传感器测量 数据采样 主动学习 Shapley值 智能采样

2024

南京航空航天大学学报(英文版)
南京航空航天大学

南京航空航天大学学报(英文版)

CSTPCD
影响因子:0.279
ISSN:1005-1120
年,卷(期):2024.41(6)