首页|基于图像处理和BP神经网络的森林防火无人机系统

基于图像处理和BP神经网络的森林防火无人机系统

扫码查看
对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98。5%,比普通神经网络的84。5%更高;耗时仅22 s,比普通神经网络159 s缩短很多。这表明,BP神经网络是更可靠且更有效率的火灾识别方案。
Forest Fire Prevention UAV System Based on Image Processing and BP Neural Network
First introduces the UAV design scheme,image processing and the technical principle of flame segmentation al-gorithm,and then uses BP neural network to identify the characteristics of the flame area change rate and flame sharp an-gle in the image,so as to realize the rapid monitoring of forest fire.The experimental results show that the accuracy of the algorithm studied in this paper is 98.5%,which is higher than 84.5%of the ordinary neural network,and takes only 22 seconds,which is much shorter than 159 seconds of the ordinary neural network,which proves that the BP neural network is a more reliable and efficient fire identification scheme.

forest fire preventionUAVimage processingBP neural network

杨静

展开 >

湖北警官学院,武汉 430034

森林防火 无人机 图像处理 BP神经网络

2025

农机化研究
黑龙江省农业机械工程科学研究院 黑龙江省农业机械学会

农机化研究

北大核心
影响因子:0.668
ISSN:1003-188X
年,卷(期):2025.47(2)