首页|PCA-BP神经网络模型在拖拉机发动机故障诊断中的应用

PCA-BP神经网络模型在拖拉机发动机故障诊断中的应用

扫码查看
拖拉机发动机故障诊断是指通过对拖拉机发动机的运行状态、传感器数据等信息进行分析和处理,识别出发动机故障的类型和位置,及时准确地诊断拖拉机发动机故障,对于提高农机装备的使用效率和经济效益具有重要的意义.为此,基于主成分分析(PCA)算法对拖拉机发动机的传感器数据进行降维处理,并使用BP神经网络对降维后的数据进行分类识别,以实现拖拉机发动机故障的诊断.试验结果表明:PCA-BP神经网络模型可以准确地诊断拖拉机发动机的多种故障,相比于传统的BP神经网络模型,具有更高的准确率和更好的泛化能力,表明PCA-BP神经网络模型在拖拉机发动机故障诊断中具有较大的应用前景.
Application of PCA-BP Neural Network Model in Tractor Engine Fault Diagnosis
Tractor engine fault diagnosis is to identify the type and location of engine faults by analyzing and processing the information of tractor engine operation status and sensor data,and to diagnose tractor engine faults timely and accu-rately,which is of great significance to improve the efficiency and economic benefits of agricultural equipment use.In this study,the sensor data of tractor engine were processed by dimensionality reduction based on principal component a-nalysis(PCA)algorithm,and then the reduced data were classified and identified using BP neural network to achieve the diagnosis of tractor engine faults.The experimental results showed that the PCA-BP neural network model can accu-rately diagnose multiple faults of tractor engines,and had higher accuracy and better generalization ability than the tradi-tional BP neural network model.The research results showed that the PCA-BP neural network model had greater appli-cation prospects in tractor engine fault diagnosis.

tractor enginefault diagnosisprincipal component analysisBP neural network

杨健

展开 >

成都农业科技职业学院,成都 611130

拖拉机发动机 故障诊断 主成分分析 BP神经网络

2025

农机化研究
黑龙江省农业机械工程科学研究院 黑龙江省农业机械学会

农机化研究

北大核心
影响因子:0.668
ISSN:1003-188X
年,卷(期):2025.47(3)