首页|深度学习方法在红花采摘机器人中的应用

深度学习方法在红花采摘机器人中的应用

扫码查看
为实现农业复杂环境中红花的快速准确识别,提出了一种基于深度学习方法的改进YOLOv5s红花目标检测算法。在YOLOv5s基础上融入适配GPU的轻量Ghost模块,获得复杂度更低、网络推理速度更快的基线模型,将CBAM注意力机制嵌入基线模型,增强了小目标物在高频特征中的表现力,并通过建立一种基于边界框宽和高差值的Focal-EIoU损失函数,提高红花在不同遮挡情况下的识别率。最后,在并联式红花采摘机器人上开展红花识别试验,验证改进算法的可行性和可靠性。结果表明:改进后的YOLOv5s模型相较于原始模型在mAP值上提高了 1。94 个百分点,模型参数量和单幅图像检测速度分别为 3。52 MB和 0。06 s/幅,红花采摘机器人视觉系统的平均识别成功率可达 89。92%。
Application of Deep Learning Method in Safflower Picking Robot
In order to realize rapid and accurate recognition of flesh safflower in complex agricultural environment,a new method based on improved YOLOv5s was proposed.Based on YOLOv5s,a GPU-adapted lightweight Ghost module is in-tegrated to obtain a baseline model with lower complexity and faster network reasoning speed.CBAM attention mechanism is embedded into the baseline model to improve the performance of small objects in high frequency features.A Focal-EIoU loss function based on border width and height difference was established to improve the recognition rate of safflower under different occlusion conditions.Finally,experiments on a parallel safflower picking robot are carried out to verify the feasibility and reliability of the improved algorithm.The experimental results show that the mAP value of the improved Yolov5s model is improved by 1.94 percentage points compared with the original model.The parameters of the model and the detection speed of a single image are 3.52 MB and 0.06 s/amplitude respectively,the recognition success rate of robot vision system for picking safflower can reach 89.92%.

safflowerpicking robotdeep learningYOLOv5srecognition success of rate

陈金荣、许燕、周建平、王小荣、崔超

展开 >

新疆大学 机械工程学院,乌鲁木齐 830047

新疆维吾尔自治区农牧机器人及智能装备工程研究中心,乌鲁木齐 830047

新疆大学 工程训练中心,乌鲁木齐 830047

红花 采摘机器人 深度学习 YOLOv5s 识别成功率

2025

农机化研究
黑龙江省农业机械工程科学研究院 黑龙江省农业机械学会

农机化研究

北大核心
影响因子:0.668
ISSN:1003-188X
年,卷(期):2025.47(4)