首页|一种添加部分自适应噪声的集成经验模态分解方法

一种添加部分自适应噪声的集成经验模态分解方法

扫码查看
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN 有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。
Method of ensemble empirical mode decomposition with partial adaptive noise
In order to solve the problem of large noise number and computation amount demand in ensemble empirical mode decomposition(EEMD)and its improved forms,the extrema and energy variation law of white noise intrinsic mode function(IMF)are statistically analyzed,and the empirical formula of the white noise IMF extrema number varying with length and order is summarized.The high-order IMF of white noise can't effectively adjust the extrema distribution of the signal,and an EEMD with partial adaptive noise(EEMDPAN)is proposed.Compared to complete EEMD with adaptive noise(CEEMDAN),EEMDPAN has two improvements:it does not use all independent adaptive noise,but instead uses complementary adaptive noise that adds up to 0 in pairs;does not add all levels of adaptive noise,but stop at a certain level in the middle,and then use the classic EMD method.Decomposing two artificial signals,experiments show that EEMDPAN effectively inherits the ability of EEMD to suppress modal aliasing.Compared to CEEMDAN,the computational complexity is reduced to one-third,and the low-order component signal of the decomposition result has less additional noise,while the high-order component signal has higher credibility.

adaptive noiseensemble empirical mode decompositionwhite noiseintrinsic mode functioncomplementary noiseadditional noisesignal credibility

李昊、陈强、徐一雄

展开 >

上海工程技术大学电子电气工程学院,上海 201600

上海航天控制技术研究所,上海 201109

自适应噪声 集成经验模态分解 白噪声 内涵模态函数 互补噪声 附加噪声 信号可信度

2024

南京理工大学学报(自然科学版)
南京理工大学

南京理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.526
ISSN:1005-9830
年,卷(期):2024.48(2)
  • 4