首页|一类基于自适应邻域的流特征选择方法

一类基于自适应邻域的流特征选择方法

扫码查看
目前虽然已经涌现出了很多类型的流特征选择技术,但大多数方法的实现在参数设置之前需获取足够的领域知识。为解决这一问题,提出了一类基于自适应邻域的流特征选择方法。首先,定义了一种新的邻域关系,它根据各个类别中样本的自然分布获取半径,从而能够自适应地构建邻域。其次,利用基于邻域的依赖关系,分析流特征的相关性和冗余性。最后,利用流特征选择的一般性流程,不难得到一个较优的特征子集。为了验证所提算法的有效性,在18 组数据集上与3 种先进的流特征选择方法进行了对比分析。试验结果表明:所提方法产生的流特征选择结果,在K近邻(KNN)和支持向量机(SVM)分类器上,能够将测试样本上的平均分类准确率显著提升5。68%以上。
Streaming feature selection method via adaptive neighborhood
Presently,though various types of streaming feature selection techniques have been developed,the implementations of most of those methods require enough domain knowledge before parameter setting.To solve this problem,a streaming feature selection method via adaptive neighborhood is proposed.Firstly,a new neighborhood relation is defined,which calculates the radius based the natural distribution of samples in each category,so that the neighborhood can be constructed adaptively.Secondly,the correlation and redundancy of streaming features are analyzed by using the neighborhood-based dependency.Finally,through using a general process of streaming feature selection,it is not difficult to seek out a satisfied feature subset.To verify the effectiveness of the proposed algorithm,a comparative analysis was carried out over 18 datasets with three advanced streaming feature selection methods.The experimental results demonstrate that the streaming feature selection results generated by the proposed method can significantly improve the average classification accuracy of the test samples over both K-nearest neighbor(KNN)and support vector machine(SVM)classifiers with the superiority of more than 5.68% .

adaptive neighborhoodfeature selectionneighborhood rough setstreaming feature

王浩宇、陈建军、王平心、杨习贝

展开 >

江苏科技大学 计算机学院,江苏 镇江 212100

江苏科技大学 理学院,江苏 镇江 212100

自适应邻域 特征选择 邻域粗糙集 流特征

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金镇江市重点研发计划

62076111620060996200612861906078SH2018005

2024

南京理工大学学报(自然科学版)
南京理工大学

南京理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.526
ISSN:1005-9830
年,卷(期):2024.48(3)
  • 23