首页|基于时空特征的城市轨道交通短时OD估计方法

基于时空特征的城市轨道交通短时OD估计方法

扫码查看
精准的短时出行地和目的地(OD)估计技术是城市轨道交通运营组织方案制定的主要依据,同时也是城轨断面客流预测的基础.为同时考虑时空双维特征,且快速实现全网OD的高精度估计,该文基于时间、空间2 个维度分析了城轨客流OD分布特征,提出多维度下的最优输入因子筛选方法,构建了基于多元线性回归模型的多层级嵌套OD估计方法.以 2019 年工作日的南京地铁线网为例进行模型验证,结果表明,时间粒度为15 min以及60 min下,全网OD的平均绝对百分比误差(MAPE)分别为 37%、24%,部分OD 对在高峰时段的 MAPE 值小于5%;15 min粒度的均方根误差(RMSE)约为1.3.相比于现有短时OD估计方法,该文提出的方法在高峰时段预测效果更好,能够高效实现全网、全时段的OD估计.
Short-term OD estimation for urban rail transit based on spatio-temporal characteristics
Accurate short-term origin-destination(OD)estimation technology is the main basis for urban rail transit operation organization plan development,and also the basis for urban rail section passenger flow prediction.To simultaneously consider the spatio-temporal dual dimensional features and achieve high-precision estimation of the entire network OD quickly,this paper analyzes the OD distribution characteristics of urban rail passenger flow based on both temporal and spatial dimensions.Then,the optimal input factor screening method under multiple dimensions is proposed.Furtherly,a multi-level nested OD estimation method based on multiple linear regression models is constructed.Numerical cases based on real-world data from Nanjing metro line network in 2019 are conducted.The results show that the mean absolute percentage error(MAPE)of the whole network OD are about 37%and 24%under the granularity of 15 min and 60 min,respectively.MAPE of some OD pairs is less than 5%during the peak hours.The root mean square error(RMSE)for a granularity of 15 min is approximately 1.3.Compared to existing short-term OD estimation methods,the model proposed in this paper has better prediction effect in peak hours,which is suitable for network-wide and time-wide OD estimation.

urban rail transitorigin-destination flowshort-term passenger flow estimationmultiple linear regressionspatial-temporal characteristics

张人杰、叶茂、金旭、郭孝洁

展开 >

南京理工大学 自动化学院,江苏 南京 210094

交通信息融合与系统控制工业和信息化部重点实验室,江苏 南京 210094

南京地铁运营有限责任公司,江苏 南京 210000

城市轨道交通 客流出行地和目的地 短时客流预测 多元线性回归 时空特征

国家重点研发计划项目江苏省交通运输科技项目

2017YFB12012022023G05

2024

南京理工大学学报(自然科学版)
南京理工大学

南京理工大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.526
ISSN:1005-9830
年,卷(期):2024.48(4)