首页|基于改进S-ResNet34模型的小麦条锈病等级识别研究

基于改进S-ResNet34模型的小麦条锈病等级识别研究

扫码查看
[目的]快速准确识别小麦条锈病病害等级,对其精准防控具有重要意义。[方法]利用数码相机获取小麦叶片条锈病RGB图像,构建小麦叶片条锈病不同病害等级数据集,通过对ResNet34模型添加通道注意力模块(SE)和Inception模块加以改进,增强模型对小麦条锈病特征的关注程度和提取能力,并采用精准率、召回率、平衡F分数和准确率等评价指标,对比分析 S-ResNet34 与 VGG16、MobileNetV2、Swin-Transformer、ResNet34 等多种主流模型的识别精度。[结果]S-ResNet34模型的训练准确率为 93。85%,相比于 VGG16(84。53%)、MobileNetV2(79。35%)、Swin-Transformer(85。67%)和 ResNet34(87。50%)等深度网络模型,准确率分别提高了 9。32%、14。50%、8。18%和6。35%。模型损失值更小,改进的ResNet34模型识别小麦条锈病特征能力更强,训练收敛更快。[结论]采用深度学习模型能够准确识别小麦条锈病发病程度,通过对ResNet34模型添加注意力模块能有效提高小麦条锈病病害识别精度。
Classification of wheat stripe rust based on improved S-ResNet34 model
[Objectives]Rapid and accurate identification of wheat stripe rust disease grade is of great significance for its precise prevention and control.[Methods]In this paper,digital cameras were used to acquire RGB images of wheat stripe rust,and data sets of different disease levels of wheat stripe rust were constructed.Channel attention module(SE)and Inception module were added to the ResNet34 model to improve the model's attention and ability to extract the features of wheat stripe rust.And using the precision,recall,balance F score and accuracy and other evaluation indicators,the recognition accuracy of S-ResNet34 was compared with that of VGG16,MobileNetV2,Swin-Transformer,ResNet34 and other mainstream models.[Results]The training accuracy of S-ResNet34 model was 93.85%,compared with deep network models such as VGG16(84.53%),MobileNet V2(79.35%),Swin-Transformer(85.67%)and ResNet34(87.50%).The accuracy rate increased by 9.32%,14.50%,8.18%and 6.35%,respectively.At the same time,the model loss value was smaller,and the improved ResNet34 model had better ability to identify the damage characteristics of wheat stripe rust and faster training convergence.[Conclusions]The deep learning model can accurately identify the degree of wheat stripe rust disease,and adding attention module to ResNet34 model can effectively improve the identification accuracy of wheat stripe rust disease.

wheat stripe rustdeep learningdisease gradeimage recognitionimproved S-ResNet34 model

尉国帅、贺佳、常宝方、袁培燕、赵肖媛、王来刚

展开 >

河南师范大学计算机与信息工程学院,河南新乡 453007

河南省农业科学院农业信息技术研究所,河南郑州 450002

农业农村部黄准海智慧农业技术重点实验室,河南郑州 450002

海南大学亚利桑那州立大学联合国际旅游学院,海南海口 570228

展开 >

小麦条锈病 深度学习 病害等级 图像识别 改进S-ResNet34模型

2025

南京农业大学学报
南京农业大学

南京农业大学学报

北大核心
影响因子:0.939
ISSN:1000-2030
年,卷(期):2025.48(1)