首页|基于夜间灯光数据和空间回归模型的人口格网化方法研究

基于夜间灯光数据和空间回归模型的人口格网化方法研究

扫码查看
为了提高地区常住人口回归结果的精度,表现地区及城市内部乡镇、街道以及更小尺度上人口分布特征,以里下河地区为研究区域,以NPP-VIIRS模拟的2020年DMSP-OLS夜间灯光数据为基础,结合土地利用/覆被数据、乡镇和街道常住人口统计数据,采用空间回归模型对各市县常住人口进行建模,并进行精度校验和结果修正,最终得到一种精度较高的人口格网化方法.结果表明:1)里下河地区夜间灯光强度累计值与人口统计数据间相关性为0.874 7(P<0.01),相关系数高;选择相关系数最高的二次项式函数作为最优模型,空间回归模型模拟效果较好;2)基于精度检验后各空间单元残差值大小不同,采用分段函数对人口格网化结果进行校正,所绘人口分布图能更加详细、准确地刻画人口的真实分布情况;3)在人口数量和密度都较小的乡镇和农村,将NPP-VIIRS数据模拟为DMSP-OLS夜间灯光数据比直接采用NPP-VIIRS数据做人口空间回归误差更小.
A Population Grid Method Based on Nighttime Light Data and Spatial Regression Model
In order to improve the accuracy of regional resident population regression results,and to represent the distribution characteristics of population within regions,towns,streets,and smaller scales within cities,the Lixiahe area is taken as the research area.Based on the 2020 DMSP-OLS nighttime light data simulated by NPP-VIIRS,combined with land use/cover data,township and street resident population statistics data,a spatial regression model is used to model the resident population of each city and county,and accuracy verification and results correction are carried out.Finally,a high-precision population grid method is obtained.The re-sults show that:1)The correlation between the cumulative value of nighttime light intensity in Lixiahe area and demographic data is 0.874 7(P<0.01),which indicates a high correlation coefficient.Choosing the quadratic function with the highest correlation coefficient as the opti-mal model,the spatial regression model has a better simulation effect.2)Based on the differ-ent residual values of each spatial unit after accuracy testing,a segmented function is used to correct the population grid results.Thus,the population distribution map drawn can more spe-cifically and accurately depict the true distribution of the population.3)In towns and rural areas with small population and density,simulating NPP-VIIRS data as DMSP-OLS nighttime light data can result in smaller population spatial regression errors compared to directly using NPP-VIIRS data.

nighttime light dataspatial regression modelpopulation grid methodLixiahe area

龚亚西、储云、程珊珊

展开 >

金陵科技学院建筑工程学院,江苏 南京 211169

中国矿业大学建筑与设计学院,江苏 徐州 221126

苏州科技大学天平学院,江苏 苏州 215009

夜间灯光数据 空间回归模型 人口格网化方法 里下河地区

国家重点研发计划金陵科技学院高层次人才科研启动基金

2018YFD1100203jitb-202342

2024

金陵科技学院学报
金陵科技学院

金陵科技学院学报

影响因子:0.5
ISSN:1672-755X
年,卷(期):2024.40(1)
  • 4