首页|基于雷达拼图CR产品四要素识别冰雹云的方法

基于雷达拼图CR产品四要素识别冰雹云的方法

扫码查看
为了提高简便、快捷、自动识别冰雹云的能力,利用雷达拼图组合反射率因子(Combined Reflectivity,CR)数据,在冰雹回波超级单体四要素特征分析的基础上,提出了简约快捷的自动识别冰雹云的方法.结果表明:聚类算法(Clustering Algorithm)、散点轮廓算法(Scatter Contour Algorithm)能够较好地识别出冰雹云回波中心强度和强回波面积;强回波梯度算法(Strong Echo Gradient Algorithm)、云砧回波算法(Cloud Anvil Echo Algorithm)计算快捷.雷达拼图 CR、强回波面积(Strong Echo Area,SEA)、强回波梯度(Strong Echo Gradient,SEG)和云砧回波(Cloud Anvil Echo,CAE)四要素被用来确定回波与冰雹云的关系.江西冰雹大多数发生在超级单体(Supercell)中,当CR≥60 dBZ、SEA≥100 km2、SEG≤8 km、CAE比值在1∶2~1∶3时,就可能发生冰雹;有些微型超级单体(Micro Supercell)在合适的天气背景和环境条件下,即使SEA=18 km2也会发生冰雹.自动识别冰雹云的方法在2022、2023年各3次冰雹过程中得到实践验证,其识别出的冰雹云区域与冰雹实况区域吻合,但也存在10%~20%的空报率.本研究结果为简便、快捷、自动识别冰雹天气提供了有效依据.
A method for identifying hail clouds based on four elements of radar mosaic CR products
Radar is the most effective tool for detecting hail.In the 1960s and 1970s,the widespread use of rain measurement radar(e.g.,Danka 41 in the UK and domestic radars such as 711,713,etc.)enabled the identifica-tion of hail clouds through radar echo features like hook-shaped,finger-shaped,and V-shaped notches.The intro-duction of Doppler weather radar in the late 1980s and early 1990s provided more accurate data,including radial velocity,for effective hail cloud identification.However,four factors affect the accuracy of hail cloud recognition:1)single radar limitations such as detection range,distance attenuation,blind spots,and Earth's curvature;2)the requirement for forecasters to possess high echo analysis skills;3)the variability of classic hail cloud characteristics with orientation,elevation,and distance;4)the limited number of PUP terminals for single radar use,insufficient for county-level forecasters.Radar mosaics can effectively compensate for some of these limita-tions,especially through web-based radar mosaic CR(Combined Reflectivity)products,which are accessible via computers,tablets,and mobile phones for simple and convenient operation.The radar mosaic CR product gathers data from multiple radars simultaneously(within±3 min).The blind spot of one radar is covered by another,and the inter-radar distance of 100-150 km is optimal for detection,min-imizing issues related to angle blind spots,Earth's curvature,and distance attenuation.The four key elements for identifying hail clouds on the CR product chart are:1)echo intensity of 60 dBZ and strong echo core ≥ 65 dBZ,2)strong echo in horizontal and vertical areas,3)strong echo gradient of 30-60 dBZ,and 4)weak echo length formed by cloud anvils.For example,in Jiangxi,hail echo intensity is typically ≥60 dBZ,with larger hail having strong echo nuclei above 65 dBZ.A strong echo area of 60 dBZ should be ≥ 100 km,although smaller hail may represent a smaller area.The vertical thickness of the strong echo(≥6 km)is also significant,though Jiangxi ra-dar mosaics lack CAPPI products for this measurement.The strong echo gradient indicates hail echo walls,with a steep gradient suggesting a shorter distance.The weak echo formed by cloud anvils reflect the high-altitude wind's"pumping"effect.Using the radar mosaic CR product,identifying hail clouds based on these four elements is nearly 100%successful,with a false report rate below 20%,primarily due to seasonal variability in element thresholds.Adding the vertical area of the strong echo can reduce the false alarm rate.Automated identification of hail-inducing echoes based on these four elements involves specific algorithms:1)echo intensity identification through comparison of adjacent points;2)strong echo area identification using clus-tering and scatter contour algorithms;3)strong echo gradient determination by comparing the distance between 30 dBZ and 60 dBZ;4)cloud anvil echo calculation by measuring the 10 dBZ distance from the 30 dBZ edge along the high-altitude wind direction.Results indicate that hail may occur when the radar mosaic CR is ≥60 dBZ,and the Strong Echo Area(SEA)is ≥ 100 km2,the Strong Echo Gradient(SEG)is ≤ 8 km,and the Cloud Anvil Echo(CAE)ratio is between 1∶2 and 1∶3.Most hail in Jiangxi occurs in supercells,though some micro super-cells with SEA=18 km2 may also produce hail under suitable conditions.A method for identifying hail clouds based on these four elements was verified through six hail processes in Jiangxi from 2022 to 2023.The identified hail cloud areas matched actual hail areas,with a false alarm rate of 10%—20%.Future efforts should focus on reducing false alarm rates by incorporating strong echo vertical area and vertical integrated liquid water content elements.This research provides practical experience for simple,fast,and automatic identification of hail weather.

hail cloudsclustering algorithmscatter contour algorithmstrong echo gradientcloud anvil echo

马中元、王金鑫、张林才、慕瑞琪、陈鲍发、郑媛媛、王立志、段和平、黄志开、董玲、张祺杰

展开 >

江西省气象科学研究所,江西南昌 330096

中国气象局交通气象重点开放实验室,江苏南京 210041

南昌云宜然科技有限公司,江西南昌 330000

南昌工程学院信息工程学院,江西南昌 330099

江苏省气象台,江苏南京 210041

景德镇市气象局,江西景德镇 333000

南京气象科技创新研究院,江苏南京 210041

中国科学院大气物理研究所,北京 100029

江西省气候中心,江西南昌 330096

抚州市气象局,江西抚州 334400

展开 >

冰雹云 聚类算法 散点轮廓算法 强回波梯度 云砧回波

北极阁基金国家重点研发计划课题中国科学院战略性先导科技专项(A类)国家自然科学基金项目江西省气象局重点科研项目2022年江西省气象局面上项目景德镇市科技计划项目

BJG2022082022YFC3003904XDA1904020241975001JX2022Z04JX2022M032022SF003

2024

大气科学学报
南京信息工程大学

大气科学学报

CSTPCD北大核心
影响因子:1.558
ISSN:1674-7097
年,卷(期):2024.47(5)