首页|基于Fast-CAANet的火焰检测方法

基于Fast-CAANet的火焰检测方法

扫码查看
高效率高速度的火焰检测方法对预防火灾、保护社会安全具有十分重要的作用。本文面向社会安全应用需求,提出一种基于Fast-CAANet的火焰检测方法。先提出一种CAA模块,加强卷积和注意力机制的有效融合;然后构建CAANet网络的主干网络(CAABlock),更有效提取火焰的丰富特征;再提出参数更小、准确度更高的Fast-CAABlock模块,提出了加强火焰特征提取的方案。实验结果表明,Fast-CAANet准确率达到 91。42%,计算量 3。9 GMac较小。所提火焰检测算法与其它算法相比,性能更优,效果更好。
Flame Detection Based on Fast-CAANet
High efficiency and high speed flame detection plays an important role in preventing fire and protecting social security.In this paper,a flame detection method based on Fast-CAANet is proposed to meet the needs of social security applications.Firstly,a CAA module is proposed to strengthen the effective integration of convolution and attention mechanism.Then the main network of CAANet(CAABlock)is constructed to extract the rich characteristics of flame more effectively.The Fast-CAABlock module with smaller parameters and higher accuracy is proposed to enhance the flame feature extraction scheme.Experimental results show that the accuracy of Fast-CAANet is up to 91.42%,and the calculation amount is 3.9 GMac.Compared with other algorithms,the proposed flame detection algorithm has better performance and effect.

deep learningfeature extractionattention mechanismflame detection

龚成张、严云洋、卞苏阳、祝巧巧、冷志超

展开 >

淮阴工学院计算机与软件工程学院,江苏 淮安 223003

江苏海洋大学计算机工程学院,江苏 连云港 222005

深度学习 特征提取 注意力机制 火焰检测

国家自然科学基金江苏省"六大人才高峰"高层次人才项目江苏省高等学校"青蓝工程"项目淮安市"533英才工程"项目

614021922013DZXX-023

2024

南京师大学报(自然科学版)
南京师范大学

南京师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.427
ISSN:1001-4616
年,卷(期):2024.47(2)
  • 8