首页|基于改进NanoDet的复杂运动场景多人体检测算法

基于改进NanoDet的复杂运动场景多人体检测算法

扫码查看
在运动赛事场景下,运动员的行为识别、传球投篮动作次数统计以及AI解说等方面都离不开对运动员的人体检测,这使得复杂场景下对运动员的人体检测速度和精度上均有较高要求。因此,本文提出一种基于NanoDet的复杂运动场景多人体检测算法。首先,该算法使用更平滑的Mish函数作为主干网络的激活函数,改进ShuffleNetV2 网络,构建主干网络,并引入CBAM注意力模块,采用轻量化路径汇集网络进行特征融合,提高检测准确性;其次,使用无锚轻量化检测头GFLV2 进行回归和分类,实现复杂运动场景下多人体目标检测;最后,为了进一步验证提出算法的性能,将研究算法与目前主流的检测算法进行实验对比,实验结果表明,相较于其他算法如 Yolov3-tiny、Yolov4-tiny 等本文算法有着更高的检测精度,比同类型的轻量化检测模型 Yolov4-tiny 高14。87%,此外,单帧检测时间与Yolov4-tiny的 10。67 ms相比减少了31。68%,由此可见,本文研究算法在保持检测速度的基础上,大幅提高了检测精度。
An Improved NanoDet-Based Multi-Human Detection Algorithm for Complex Motion Scenes
In sports event scenarios,athlete behaviour recognition,passing and shooting action count and AI commentary are inseparable from human body detection of athletes,which makes high requirements on the speed and accuracy of human body detection of athletes in complex scenarios.Therefore,this paper proposes a NanoDet-based multi-body detection algorithm for complex sports scenes.First,the algorithm uses a smoother Mish function as the activation function of the backbone network,improves the ShuffleNetV2 network,builds the backbone network,and introduces the CBAM attention module,and uses a lightweight path pooling network for feature fusion to improve detection accuracy;next,it uses the anchorless lightweight detection head GFLV2 for regression and classification to achieve multi-body target detection in complex motion scenes.Finally,in order to further verify the performance of the proposed algorithm,the research algorithm is experimentally compared with the current mainstream detection algorithms,the experimental results show that the algorithm in this paper has higher detection accuracy compared to other algorithms such as Yolov3-tiny and Yolov4-tiny,which is 14.87%higher than the same type of lightweight detection model Yolov4-tiny.In addition,the single-frame detection time is reduced by 31.68%compared to the 10.67ms of Yolov4-tiny,which shows that the investigated method substantially improves the detection accuracy while maintaining the detection speed improvement.

deep learninghuman detectionlightweight modelattention mechanism

刘丛昊、王军、谢非、杨继全、马磊、王琼

展开 >

南京师范大学 电气与自动化工程学院,江苏 南京 210023

南京三万物联网科技有限公司,江苏 南京 210000

南京师范大学 计算机与电子信息学院,江苏 南京 210023

深度学习 人体检测 轻量化模型 注意力机制

国家自然科学基金江苏省科技成果转化项目江苏省省级工业和信息产业转型升级专项江苏省研究生科研与实践创新计划

41974033BA2020004JITC-2000AX0676-71

2024

南京师大学报(自然科学版)
南京师范大学

南京师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.427
ISSN:1001-4616
年,卷(期):2024.47(2)
  • 1