首页|一般有界区域上高维变权p-Laplacian问题保号解的存在性

一般有界区域上高维变权p-Laplacian问题保号解的存在性

扫码查看
研究一般有界区域上高维变权p-Laplacian方程-div(φp(∇u))=γm(x)f(u),u(x)=0,x∈∂Ω保号解的存在性。其中Ω是RN上的一个有界且在其边界上光滑的区域,m(x)∈C((Ω)),γ是一个参数,f∈C(R,R),对于s≠0 满足sf(s)>0。当满足f0∉(0,∞)或f∞∉(0,∞)(其中f0=lim|s|→0 f(s)/φp(s),f∞=lim|s|→∞f(s)/φp(s)),且γ≠0属于一定区间时,本文研究上述高维p-Laplacian方程保号解的存在性。我们用全局分歧技巧和连通序列集取极限的方法获得主要结果。
Existence of One-sign Solutions to the High-Dimensional Sign-Changing Weight p-Laplacian on General Domain
In this paper,we shall study the existence of one-sign solutions for thep-Laplacian problem:-div(φp(∇u))=γm(x)f(u),u(x)=0,x∈∂Ω,where Ω is a bounded domain in RN with a smooth boundary ∂Ω,and m(x)∈C((Ω))is a sign changing function,γ is a parameter,f∈C(R,R),sf(s)>0 for s≠0.Based on the bifurcation result of Dai et al.[9,Theorem 5.1],we give the intervals for the parameter γ≠0 which ensure the existence of one-sign solutions for the above high-dimensional p-Laplacian problems if f0 ∉(0,∞)or f∞ ∉(0,∞),where f0=lim|s|→0 f(s)/φp(s),f∞=lim|s|→∞ f(s)/φp(s).We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.

unilateral global bifurcationhigh-dimensional sign-changing weight p-Laplacian problems on general domainone-sign solutions

沈文国

展开 >

广东科技学院通识教育学院,广东 东莞 523083

单侧全局分歧 一般区域上高维变权p-Laplacian方程 保号解

国家自然科学基金项目

11561038

2024

南京师大学报(自然科学版)
南京师范大学

南京师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.427
ISSN:1001-4616
年,卷(期):2024.47(3)