首页|可解释孪生图对比学习及其在脑疾病诊断中的应用

可解释孪生图对比学习及其在脑疾病诊断中的应用

扫码查看
近年来,许多研究采用静息态磁共振成像(rs-fMRI)构建动态功能连接网络,并将其应用于癫痫、精神分裂症等脑部疾病的诊断。研究表明,图卷积网络可以有效保存图结构,提取脑网络的高阶特征。然而,现有的利用GCN模型对脑疾病进行诊断的模型通常在训练的过程中不进行图结构的更新,因此模型效果常常受到输入图质量的约束。另外由于GCN模型缺乏可解释性的特点,也限制了模型在疾病诊断上的广泛应用。在本文中,我们提出了一个可解释的孪生图对比网络用于提取大脑的时空信息。具体而言,可解释模块通过图生成网络结合脑区之间的相关性信息,动态调整输入模型图结构。图对比模块学习脑网络全局和局部的信息提高特征表达的鉴别性。孪生网络模块将成对的样本图作为模型输入,从而缓解数据样本量少的问题。所有模块联合优化,在个体层面提取大脑网络时域和空域上的特征并进行可靠的疾病诊断。实验结果表明,该方法在癫痫数据集上具有较好的诊断性能,并为疾病诊断提供可解释性。
Interpretable Siamese Graph Contrastive Networks for Brain Disease Diagnosis
In recent years,many studies have used rs-fMRI to construct dynamic functional connectivity network and applied it to the diagnosis of brain diseases such as epilepsy and schizophrenia.The results show that graph convolution network(GCN)can effectively preserve graph structure and extract higher-order features of brain network.However,the existing models using GCN model to diagnose brain diseases usually do not update the graph structure during the training process,so the model effect is often constrained by the quality of the input graph.In addition,the lack of explainability limits the wide application of GCN model in disease diagnosis.In this paper,we propose an interpretable Siamese graph contrastive network to extract spatio-temporal information from the brain network.Specifically,the interpretable module dynamically adjusts the graph structure of the input model by combining the correlation information between brain regions through graph generation network.The graph contrast module learns global and local information of brain network to obtain discriminative feature embedding.Siamese network module takes paired subject graph as model input to alleviate the problem of small data subject size.All modules in our method are optimized together to extract temporal and spatial features of brain networks at the individual level for reliable disease diagnosis.Experimental results show that the proposed method achieves promising diagnostic performance on epilepsy datasets and provides explainable results.

brain network researchinterpretablegraph generation networkgraph contrastive learningsiamese networks

徐如婷、朱旗、孙凯、朱敏、邵伟、张道强

展开 >

南京航空航天大学计算机科学与技术学院,江苏 南京,211106

深圳市华赛瑞飞智能科技有限公司,广东 深圳 518063

南京航空航天大学公共实验教学部,江苏 南京 211106

脑网络研究 可解释 图生成网络 图对比学习 孪生网络

江苏省自然科学基金项目江苏省重点研发项目国家自然科学基金项目国家自然科学基金项目

BK20231438BE2022826207612962371234

2024

南京师大学报(自然科学版)
南京师范大学

南京师大学报(自然科学版)

CSTPCD北大核心
影响因子:0.427
ISSN:1001-4616
年,卷(期):2024.47(3)