首页|顾及多重分类与粒度划分的国土空间数据模型研究与应用

顾及多重分类与粒度划分的国土空间数据模型研究与应用

扫码查看
国土空间数据在分类分级、过程演化等方面都存在着分类、互依赖、组合构成和前后次序等高阶关系,现有的图层、面向对象、数据立方体等数据模型难以完全刻画全部关系.本文提出了基于有向超图的顾及多重分类与颗粒体系的国土空间数据模型,运用关联矩阵进行逻辑描述,基于超级图形数据库进行物理模型实现和国土空间演化过程的时空分析,解决了全域、全要素、全空间国土空间数据多重分类与颗粒体系表达的难题.相关成果在南京市国土空间基础信息平台得到了应用验证,增强了平台对复杂关系的运营效能,实现了多维关系数据的聚合,为平台实现数据资源自动分类和信息智能定向推送奠定了基础.
Research and Application of National Spatial Data Model Concerning Multiple Classification and Granularity Division
The national spatial data exhibits complex relationships in terms of classification,hierarchical structure,and process evolution.These relationships involve high-order attributes such as classification,interdependence,composition,and temporal sequence.Existing data models like layers,object-oriented,and data cubes struggle to fully capture all these relationships.This paper introduces a national spatial data model based on directed hypergraphs,which takes into account multiple classifications and granularity divisions.A relational matrix is used for logical description,and a hypergraph database is employed for the physical model implementation and spatiotemporal analysis of national spatial evolution processes.This model effectively addresses the challenge of expressing multiple classifications and granularity divisions for nationwide,all-element,and entire space national spatial data.The proposed approach has been validated through application on the Nanjing City National Spatial Basic Information Platform.It enhances the platform's operational efficiency in handling complex relationships,enables aggregation of multidimensional relational data,and establishes the foundation for the platform to achieve automatic data categorization and intelligent targeted information dissemination.

National spatial data modelmultiple classificationsmultiple granularity divisionsdirected hypergraph

周海洋、汪洋、兰馨、周良辰

展开 >

南京市国土资源信息中心,江苏 南京 210005

南京师范大学地理科学学院,江苏 南京 210023

南京师范大学江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023

南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210023

展开 >

国土空间数据模型 多重分类 多颗粒分割 有向超图

国家重点研发计划课题项目江苏省自然资源科技创新项目

2022YFC3803601KJXM2020033

2024

南京师范大学学报(工程技术版)
南京师范大学

南京师范大学学报(工程技术版)

影响因子:0.313
ISSN:1672-1292
年,卷(期):2024.24(1)
  • 12