首页|基于优化小波变换神经网络的分布式新能源信息预测方法

基于优化小波变换神经网络的分布式新能源信息预测方法

扫码查看
分布式新能源发电是低碳化电力系统中重要的一部分.随着分布式新能源在城市电网中的占比逐渐增加,负荷随机波动和天气随机变化对于城市电网的影响日益增强,对分布式新能源信息的预测准确性提出了更高的要求.目前,分布式新能源的主要发电方式是分布式光伏发电以及分布式风力发电.城市用电负荷的变化兼具周期性和随机性,而风速和辐照强度等因素分别对于分布式风力发电和分布式光伏发电有重要影响.为了准确预测出分布式新能源的信息,构建了基于小波变换神经网络的分布式新能源信息预测方法.首先,通过分析分布式新能源的工作原理,建立分布式新能源的模型;然后,优化小波变换神经网络,以风力发电和光伏发电为例对负荷用电功率和辐照强度等对电网作用显著的参数进行预测;最后,算例验证模型对分布式新能源信息进行预测的准确性.
Optimized Wavelet Transform Neural Networks for Accurat Distributed Renewable Energy Information Prediction
Distributed renewable energy generation is a crucial component of low-carbon power systems.As the proportion of distributed renewable energy in urban power grids is gradually increasing,and the impacts of random load fluctuations and random weather changes on urban power grids are increasing,placing higher demands on the accuracy of distributed renewable energy information forecasting.Currently,the primary generation methods of distributed renewable energy are distributed photovoltaic power generation and distributed wind power generation.The changes of urban electricity load are both cyclical and random,while factors such as wind speed and solar irradiance have significant impacts on distributed wind power generation and distributed photovoltaic power generation,respectively.Therefore,based on wavelet transform neural network,a distributed renewable energy information prediction method is constructed.Firstly,the model of distributed renewable energy is established by analyzing the working principle of distributed renewable energy.Then,the wavelet transform neural network is optimized to predict the parameters that play a significant role in the renewable energy grid,such as the load power change and the irradiation intensity,using wind power generation and photovoltaic power generation as examples.Finally,the example verifies that the proposed model can accurately predict the information of distributed renewable energy.

distributed renewable energyload predictionirradiation intensity predictionurban power gridwavelet transform neural network

栾开宁、庄重、杨世海、段梅梅、孔月萍、周雨奇、张汀荃、丁泽诚

展开 >

国网江苏省电力有限公司,江苏 南京 210019

国网江苏省电力有限公司营销服务中心,江苏 南京 210019

分布式新能源 负荷预测 辐照强度预测 城市电网 小波变换神经网络

国家电网科技项目

J2022045

2024

南京师范大学学报(工程技术版)
南京师范大学

南京师范大学学报(工程技术版)

影响因子:0.313
ISSN:1672-1292
年,卷(期):2024.24(2)
  • 21