首页|基于注意力机制与高分辨率网络的人体姿态估计

基于注意力机制与高分辨率网络的人体姿态估计

扫码查看
人体姿态估计旨在从图像或视频中精确识别关键点位置和姿态,对行为识别、人机交互等至关重要.高分辨率网络能够从图像中提取包含多尺度信息的人体关键点特征,但主要聚焦于图像局部范围内的特征信息,难以捕捉关节间的长距离依赖,因此易受复杂背景、遮挡等因素影响,限制了准确率.针对高分辨率网络在人体姿态估计中所面临的问题,提出了一种融合注意力机制和高分辨率网络的深度学习模块C2F-CBAM,该模块结合了 C2F模块和CBAM模块的优势,结合先进的特征提取技术和强化的注意力机制,C2F-CBAM模块显著提高了模型在识别关键点的准确性.此外,将C2F-CBAM模块嵌入到HRNet网络的关键位置,使得该方法能够更好地整合和综合不同尺度的特征信息.这种融合策略不仅增强了模型对各种人体姿态和图像分辨率的适应性,还有效地处理了复杂背景和遮挡等问题.实验结果显示,该模型在COCO2017验证集上相较于其他方法具有显著优势,平均精度比传统HRNet网络提升了 0.9,充分验证了模型的有效性和优越性.
Human Pose Estimation Based on Attention Mechanism and High-resolution Network
Human pose estimation aims to accurately identify key point positions and postures from images or videos,which is essential for behavior recognition,human-computer interaction,etc.The high-resolution network can extract the key point features of the human body containing multi-scale information from the image,but it mainly focuses on the feature information within the local range of the image,and it is difficult to capture the long-distance dependence between joints,so it is susceptible to complex background,occlusion and other factors,which limit the accuracy.In order to solve the problems faced by high-resolution networks in human pose estimation,this paper proposes a deep learning module that integrates attention mechanism and high-resolution network called C2F-CBAM,which combines the advantages of C2F module and CBAM module,and significantly improves the accuracy of the model in identifying key points by combining advanced feature extraction technology and enhanced attention mechanism.In addition,the C2F-CBAM module is embedded in the key position of the HRNet network,so that the method can better integrate and synthesize feature information at different scales,which not only enhances the adaptability of the model to various human postures and image resolutions,but also effectively deals with complex backgrounds and occlusions.Experimental results show that the proposed model has significant advantages over other methods in the COCO2017 validation set,and the average accuracy is improved by 0.9 compared with the traditional HRNet network,which fully verifies the effectiveness and superiority of the model.

human posture estimationattention mechanismshigh-resolution networksC2F-CBAM modulecritical point detection

张铭、李成龙、高新燕、王鹏飞、张金萧

展开 >

山东建筑大学计算机科学与技术学院,山东济南 250000

山东华云三维科技有限公司,山东济南 250000

中建八局第二建设有限公司,山东济南 250000

人体姿态估计 注意力机制 高分辨率网络 C2F-CBAM模块 关键点检测

2024

南京师范大学学报(工程技术版)
南京师范大学

南京师范大学学报(工程技术版)

影响因子:0.313
ISSN:1672-1292
年,卷(期):2024.24(4)