首页|基于骨骼特征点的跌倒检测方法

基于骨骼特征点的跌倒检测方法

扫码查看
针对现有跌倒检测方法中利用时空图卷积网络(ST-GCN)进行行为检测的准确率有待提高、时间信息利用不够充分等问题,提出了一种基于轻量级YOLO v3人体目标检测模型结合人体骨骼特征点的跌倒检测方法。本方法利用AlphaPose算法实时得到人体的骨骼特征点信息,在此基础上结合改进的ST-GCN模型提取了强化后的行为时空信息,从而对跌倒进行更加准确的检测。在通用数据集及自建数据集上的测试结果表明,该方法在跌倒检测中具有良好的效果。
A fall detection method based on skeletal feature points
Aiming at the problem that the accuracy of behavior detection using Spatio-Temporal Graph Convolutional Network(ST-GCN)in the existing fall detection methods needs to be improved,and the time information is not enough uti-lized,a fall detection method based on lightweight YOLOv3 human target detection model combined with human skeletal fea-ture points is proposed.In this method,the AlphaPose algorithm is used to obtain the information of human skeletal feature points in real time.On the basis,combined with the improved ST-GCN model,the enhanced behavioral spatio-temporal infor-mation is extracted,so as to detect falls more accurately.The test results on the general data set and the self-built data set show that the method is effective in fall detection.

computer visionfall behavior detectionobject detectionskeletal feature pointsspatio-temporal graph convolution

侯相军、陈亚军、孙超越、肖慈

展开 >

西华师范大学电子信息工程学院,四川 南充 637009

计算机视觉 跌倒行为检测 目标检测 骨骼特征点 时空图卷积

教育部产学合作协同育人项目西华师范大学英才基金项目

201802031076463177

2024

内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
年,卷(期):2024.39(2)
  • 18