内江师范学院学报2024,Vol.39Issue(4) :13-19,25.DOI:10.13603/j.cnki.51-1621/z.2024.04.003

基于相对利润最大化下的非对称量子Cournot博弈的动力学分析

Kinematic analysis of asymmetric quantum Cournot game based on relative profit maximization

邓智艺
内江师范学院学报2024,Vol.39Issue(4) :13-19,25.DOI:10.13603/j.cnki.51-1621/z.2024.04.003

基于相对利润最大化下的非对称量子Cournot博弈的动力学分析

Kinematic analysis of asymmetric quantum Cournot game based on relative profit maximization

邓智艺1
扫码查看

作者信息

  • 1. 兰州交通大学数理学院,甘肃 兰州 730070
  • 折叠

摘要

针对相对利润最大化下的非对称量子Cournot博弈模型进行了分析,旨在研究经济系统中的复杂行为和决策过程.引入了量子纠缠的概念,并结合非对称的需求函数和成本函数,探索了企业之间的动态互动和策略选择.通过建立动态博弈模型,揭示了系统的演化过程和稳定性条件,分析了量子纠缠度以及非对称的需求函数和成本函数对纳什均衡点稳定性和复杂动力行为的影响.数值模拟表明当固定其他参数时,较小的调整速度可以使市场环境保持相对稳定.而量子纠缠度可以增强系统的稳定性,当企业产量调整速度过大时,会导致系统呈现复杂的混沌特性,而量子纠缠度可以有效地控制混沌状态的出现.最后,比较了非对称性对均衡解以及稳定性的影响.

Abstract

The asymmetric quantum Cournot game model under relative profit maximization is analyzed,of which the aim is to study complex behaviors and decision-making processes in economic systems.The concept of quantum entanglement is introduced,and in combination with asymmetric demand functions and cost functions,the dynamic interactions and strategy choices between enterprises are explored.By establishing a dynamic game model,the evolution process and stability conditions of the system are revealed.The effects of quantum entanglement and asymmetric demand and cost functions on the stability of the Nash equilibrium point and complex dynamic behavior are examined.Numerical simulations show that when other parame-ters are fixed,a smaller adjustment speed can keep the market environment relatively stable.Quantum entanglement can en-hance the stability of the system.When the company's output adjustment speed is too large,it will cause the system to exhibit complex chaotic characteristics,and quantum entanglement can effectively prevent the emergence of chaotic states.Finally,the effects of asymmetry on equilibrium solutions and stability are compared.

关键词

相对利润最大化/非对称双寡头博弈/量子纠缠/分岔/多稳态运动

Key words

relative profit maximization/asymmetric duopoly game/quantum entanglement/bifurcation/multi-stability motion

引用本文复制引用

基金项目

国家自然科学基金(61863022)

出版年

2024
内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
参考文献量17
段落导航相关论文