内江师范学院学报2024,Vol.39Issue(4) :20-25.DOI:10.13603/j.cnki.51-1621/z.2024.04.004

一类弱齐次向量优化问题解集的非空有界性

On the nonemptiness and boundedness of solution sets for weakly homogeneous vector optimization problems

邹萌 李耿华
内江师范学院学报2024,Vol.39Issue(4) :20-25.DOI:10.13603/j.cnki.51-1621/z.2024.04.004

一类弱齐次向量优化问题解集的非空有界性

On the nonemptiness and boundedness of solution sets for weakly homogeneous vector optimization problems

邹萌 1李耿华1
扫码查看

作者信息

  • 1. 重庆工商大学数学与统计学院,重庆 400067
  • 折叠

摘要

弱齐次向量优化问题是一类非凸向量优化问题.利用渐近锥和渐近函数,给出了弱齐次向量优化问题的强型和弱型正则性条件,并讨论其性质.在正则性条件下,研究了弱齐次向量优化问题(弱)Pareto有效解集的非空性和有界性.此外,还提出了解集非空有界性的一个新的充分性条件,并讨论了它与强正则性条件的关系.

Abstract

Weakly homogeneous vector optimization is a class of nonconvex vector optimization problems.Based on the asymptotic cone and asymptotic function,strong and weak regularity conditions for weakly homogeneous vector optimization problem are given,and their properties are discussed.Under the regularity conditions,the nonemptiness and boundedness of(weakly)Pareto efficient solution set for weakly homogeneous vector optimization problems are studied.Furthermore,a new suf ficient condition for the nonemptiness and boundedness of the solution set is proposed,and its relationship with the strong regular condition is discussed.

关键词

向量优化/渐近函数/正则性条件/非空性/有界性

Key words

vector optimization/asymptotic function/regularity condition/nonemptiness/boundedness

引用本文复制引用

基金项目

重庆市自然科学基金(cstc2020jcyjmsxmX0231)

重庆工商大学高层次人才科研启动基金(2056007)

出版年

2024
内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
参考文献量20
段落导航相关论文