首页|一类弱齐次向量优化问题解集的非空有界性

一类弱齐次向量优化问题解集的非空有界性

扫码查看
弱齐次向量优化问题是一类非凸向量优化问题。利用渐近锥和渐近函数,给出了弱齐次向量优化问题的强型和弱型正则性条件,并讨论其性质。在正则性条件下,研究了弱齐次向量优化问题(弱)Pareto有效解集的非空性和有界性。此外,还提出了解集非空有界性的一个新的充分性条件,并讨论了它与强正则性条件的关系。
On the nonemptiness and boundedness of solution sets for weakly homogeneous vector optimization problems
Weakly homogeneous vector optimization is a class of nonconvex vector optimization problems.Based on the asymptotic cone and asymptotic function,strong and weak regularity conditions for weakly homogeneous vector optimization problem are given,and their properties are discussed.Under the regularity conditions,the nonemptiness and boundedness of(weakly)Pareto efficient solution set for weakly homogeneous vector optimization problems are studied.Furthermore,a new suf ficient condition for the nonemptiness and boundedness of the solution set is proposed,and its relationship with the strong regular condition is discussed.

vector optimizationasymptotic functionregularity conditionnonemptinessboundedness

邹萌、李耿华

展开 >

重庆工商大学数学与统计学院,重庆 400067

向量优化 渐近函数 正则性条件 非空性 有界性

重庆市自然科学基金重庆工商大学高层次人才科研启动基金

cstc2020jcyjmsxmX02312056007

2024

内江师范学院学报
内江师范学院

内江师范学院学报

影响因子:0.299
ISSN:1671-1785
年,卷(期):2024.39(4)
  • 20